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Instructions

These questions are offered in two formats: a deck of PowerPoint slides, and a PDF file. The two files contain identical
contents. There are similar files for each of the 14 chapters in the book, for a total of 28 files.

Each question is marked as a “Quick Check” or “ConcepTest.”

- Quick Checks are questions that most students should be able to answer correctly if they have done the reading or
followed the lecture. You can use them to make sure students are where you think they are before you move on.

- ConcepTests (a term coined by Eric Mazur) are intended to stimulate debate, so you don’t want to prep the class
too explicitly before asking them. Ideally you want between 30% and 80% of the class to answer correctly.

Either way, if a strong majority answers correctly, you can briefly discuss the answer and move on. If many students do
not answer correctly, consider having them talk briefly in pairs or small groups and then vote again. You may be surprised
at how much a minute of unguided discussion improves the hit rate.

Each question is shown on two slides: the first shows only the question, and the second adds the correct answer.

Some of these questions are also included in the book under “Conceptual Questions and ConcepTests,” but this file
contains additional questions that are not in the book.

Some of the pages contain multiple questions with the same set of options. These questions are numbered as separate
questions on the page.

Some questions can have multiple answers. (These are all clearly marked with the phrase “Choose all that apply.”) If you
are using a clicker system that doesn’t allow multiple responses, you can ask each part separately as a yes-or-no question.



Unbou ndStates




6.1. MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

6.1 Math Interlude: Standing Waves, Traveling Waves, and Partial Deriva-
tives



Quick Check 6.1. MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

Which of the following describes the evolution of a standing wave
over time? (Choose one.)

A. The amplitude and the wavelength both change.

B. The amplitude changes but the wavelength doesn’t.
C. The wavelength changes but the amplitude doesn’t.
D. Neither the amplitude nor the wavelength changes.



Quick Check 6.1. MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

Which of the following describes the evolution of a standing wave
over time? (Choose one.)

A. The amplitude and the wavelength both change.

B. The amplitude changes but the wavelength doesn’t.
C. The wavelength changes but the amplitude doesn’t.
D. Neither the amplitude nor the wavelength changes.

Solution: B



Quick Check 6.1. MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

A standing wave starts out in the form y = 3 cos(2x). If you
watch that standing wave over time, which of the following never
changes? (Choose one.)

A. The x-intercepts.
B. The y-intercept.
C. The area under one wavelength’s worth of the curve.

D. None of the above.



Quick Check 6.1. MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

A standing wave starts out in the form y = 3 cos(2x). If you
watch that standing wave over time, which of the following never
changes? (Choose one.)

A. The x-intercepts.
B. The y-intercept.
C. The area under one wavelength’s worth of the curve.

D. None of the above.

Solution: A



Quick Check 6.1. MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

If you watch a traveling wave over time, which of the following
never changes? (Choose one.)

A. The x-intercepts.
B. The y-intercept.
C. The area under one wavelength’s worth of the curve.

D. None of the above.



Quick Check 6.1. MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

If you watch a traveling wave over time, which of the following
never changes? (Choose one.)

A. The x-intercepts.
B. The y-intercept.
C. The area under one wavelength’s worth of the curve.

D. None of the above.

Solution: C



Quick Check 6.1. MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

Let u(x, t) be the temperature along a rod. If the temperature is
the same everywhere on the rod, and it’s steadily getting hotter
all over the rod at the same rate, which of the following is true?
(Choose one.)

A. (Ou/0ox) > (0u/0%)
B. (du/0x) = (du/0t)
C. (du/0x) < (0u/0t)

D. There’s not enough information to tell.



Quick Check 6.1. MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

Let u(x, t) be the temperature along a rod. If the temperature is
the same everywhere on the rod, and it’s steadily getting hotter
all over the rod at the same rate, which of the following is true?
(Choose one.)

A. (Ou/0x) > (0u/0%)
B. (du/0x) = (du/0%)
C. (du/0x) < (du/0ot)

D. There’s not enough information to tell.

Solution: C



Quick Check 6.1. MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

If f(x, t) = 2x?sin(3t), which of the following is 8f/0x? (Choose
one.)

A.4x

B. 4xsin(37)

C. 6x2 cos(3?)

D. 12xcos(3%)



Quick Check 6.1. MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

If f(x, t) = 2x?sin(3t), which of the following is 8f/0x? (Choose
one.)

A.4x

B. 4xsin(37)

C. 6x2 cos(3?)

D. 12xcos(3%)

Solution: B



ConcepTest 6.1. MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

What is the period of the function f(f) = 2sin(4t) + 3sin(2t)?
(Choose one.)

A.2
B. 4
C.mt/2
D.t

E. This function doesn’t have a well-defined period.



ConcepTest 6.1. MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

What is the period of the function f(f) = 2sin(4t) + 3sin(2t)?
(Choose one.)

A.2
B. 4
C.rt/2
D.t

E. This function doesn’t have a well-defined period.

Solution: D. Period is defined as the time it takes for the func-
tion to return to its original value and start repeating. The first
sine has period m/2 and the second one has period m. After
t = m/2 the first one will start repeating but the second one
will be halfway through its period. After t= 1 both sines will be
back where they started, so that’s when the whole function will
start repeating.



ConcepTest 6.1. MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

The function f(x, t) has the following two properties.

If you look at the entire function at any particular moment in time, you see a sine wave in x.

If you follow the function at any particular x-value, you see it oscillating sinusoidally in t.
Choose one.

A. This function is neither a standing wave nor a traveling wave.

B. This function might be a standing wave, but it is not a traveling wave.
C. This function might be a traveling wave, but it is not a standing wave.
D. This function might be a traveling wave, or it might be a standing wave.

E. This function could be both a traveling wave and a standing wave, because they are two mathematical
forms for expressing the same motion.



ConcepTest 6.1. MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

The function f(x, t) has the following two properties.

If you look at the entire function at any particular moment in time, you see a sine wave in x.

If you follow the function at any particular x-value, you see it oscillating sinusoidally in t.
Choose one.

A. This function is neither a standing wave nor a traveling wave.

B. This function might be a standing wave, but it is not a traveling wave.

C. This function might be a traveling wave, but it is not a standing wave.

D. This function might be a traveling wave, or it might be a standing wave.

E. This function could be both a traveling wave and a standing wave, because they are two mathematical

forms for expressing the same motion.

Solution: D



ConcepTest 6.1. MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

A curve 1s changing over time, so its height 1s given as a function

y(x, t). The partial derivative 0%y/0x? is, in general. . . (Choose
one.)

A. A constant.

B. A function of x but not ¢
C. A function of ¢ but not x.
D. A function of both x and .



ConcepTest 6.1. MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

A curve 1s changing over time, so its height 1s given as a function
y(x, t). The partial derivative 0%y/0x? is, in general. . . (Choose
one.)

A. A constant.

B. A function of x but not ¢
C. A function of ¢ but not x.
D. A function of both x and .

Solution: D



ConcepTest 6.1. MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

A curve 1s changing over time, so its height 1s given as a function
y(x, t). At one particular place and time, the following “mixed
partial derivative” 1s positive.

0 0y

ot 0Ox

What does that tell you about the curve at that place and time?
Choose one.

A. The slope of the curve is positive.

B. The curve 1s moving upward.

C. The concavity of the curve is positive.
D. The curve 1s accelerating upward.

E. The slope of the curve 1s getting higher over time.



ConcepTest 6.1. MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

A curve is changing over time, so its height is given as a function y(x, f). At one particular place and time,
the following “mixed partial derivative” is positive.

0 Jy
ot 0Ox

What does that tell you about the curve at that place and time? Choose one.

A. The slope of the curve is positive.
The curve is moving upward.
The concavity of the curve is positive.

. The curve is accelerating upward.

= O 0 &

The slope of the curve is getting higher over time.

Solution: E. (0y/0x) is the slope, and 0/0t of anything tells you how that thing is changing over time,
so this tells you how the slope is changing.



6.2. FREE PARTICLES AND FOURIER TRANSFORMS

6.2 Free Particles and Fourier Transforms



Quick Check 6.2. FREE PARTICLES AND FOURIER TRANSFORMS

Why 1sn’t 1t possible for a particle to have the following wavefunc-
tion?
w( X) _ Aeiklx + Beikzx
(Choose one.)
A. It’s not continuous.
B. It’s not differentiable.

C. It’s not normalizable.

D. It’s not a solution to the time-independent Schrodinger equa-
tion.



Quick Check 6.2. FREE PARTICLES AND FOURIER TRANSFORMS

Why 1sn’t 1t possible for a particle to have the following wavefunc-
tion?
l/)( X) _ Aeiklx + Beikzx
(Choose one.)
A. It’s not continuous.
B. It’s not differentiable.
C. It’s not normalizable.

D. It’s not a solution to the time-independent Schrodinger equa-
tion.

Solution: C



Quick Check 6.2. FREE PARTICLES AND FOURIER TRANSFORMS

The functions wm(x) = €™ and w—n(x) = e U™ represent. . .
(Choose one.)

A. Two different eigenstates of a free particle, representing two
different energy levels.

B. Two different eigenstates of a free particle, both representing
the same energy level.

C. The same eigenstate of a free particle, expressed in two different
ways.



Quick Check 6.2. FREE PARTICLES AND FOURIER TRANSFORMS

The functions wm(x) = €™ and w—n(x) = e U™ represent. . .

(Choose one.)

A. Two different eigenstates of a free particle, representing two
different energy levels.

B. Two different eigenstates of a free particle, both representing
the same energy level.

C. The same eigenstate of a free particle, expressed in two different
ways.

Solution: B



Quick Check 6.2. FREE PARTICLES AND FOURIER TRANSFORMS

A Fourier transform 1s a mathematical technique for...(Choose
one.)

A. Finding the complex exponential function that most nearly ap-
proximates a given function f(x).

B. Writing a function f(x) as a series of complex exponentials.

C. Writing a function f(x) as an integral over complex exponen-
tials.

D. Writing a function f(x) as a polynomial.



Quick Check 6.2. FREE PARTICLES AND FOURIER TRANSFORMS

A Fourier transform 1s a mathematical technique for...(Choose
one.)

A. Finding the complex exponential function that most nearly ap-
proximates a given function f(x).

B. Writing a function f(x) as a series of complex exponentials.

C. Writing a function f(x) as an integral over complex exponen-
tials.

D. Writing a function f(x) as a polynomial.

Solution: C



Quick Check 6.2. FREE PARTICLES AND FOURIER TRANSFORMS

"7 sin(kx) .
If you evaluated i dk, you would end up with. . . (Choose
3 erxXx—2

one.)

A. A constant

B. A function of x
C. A function of k

D. A multivariate function of both x and k



Quick Check 6.2. FREE PARTICLES AND FOURIER TRANSFORMS

"7 sin(kx) .
If you evaluated i dk, you would end up with. . . (Choose
3 erxXx—2

one.)

A. A constant

B. A function of x
C. A function of k

D. A multivariate function of both x and k

Solution: B



ConcepTest 6.2. FREE PARTICLES AND FOURIER TRANSFORMS

True or false? If you know y(k) you can find the position proba-
bilities for a particle.



ConcepTest 6.2. FREE PARTICLES AND FOURIER TRANSFORMS

True or false? If you know y(k) you can find the position proba-
bilities for a particle.

Solution: True. From y(k) you can find y(x), which gives the
position probability density.



ConcepTest 6.2. FREE PARTICLES AND FOURIER TRANSFORMS

iy, 12
The integral ‘l/)(k)‘ dk represents. . . (Choose one.)
0

A. The probability of finding a free particle’s energy between 0
and hzklz/ (2m).

B. Half the probability of finding a free particle’s energy between
0 and hzlqz/(Zm).

C. Neither of those things.



ConcepTest 6.2. FREE PARTICLES AND FOURIER TRANSFORMS

iy, 12
The integral ‘l/)(k)‘ dk represents. . . (Choose one.)
0

A. The probability of finding a free particle’s energy between 0
and hzklz/ (2m).

B. Half the probability of finding a free particle’s energy between
0 and hzlqz/(Zm).

C. Neither of those things.

Solution: C. The probal?jli}cy of finding the particle’s energy be-

L. 2
tween 0 and #1%k?/(2m) is | Y k)| dk, but there’s no guaran-
_kl
tee that the lower half of that integral is equal to the upper half,
so just going the upper half doesn’t necessarily give you half the

probability.



ConcepTest 6.2. FREE PARTICLES AND FOURIER TRANSFORMS

If you follow the function eFx~®9 gver time, you will see that. . . (Choose
one.)

A. At any given x-value, the function rotates in a circle around
the complex plane.

B. The entire function keeps its shape but moves at constant speed
along the x-axis.

C. Both A. and B. are correct; they are actually saying the same
thing 1n this case.

D. Neither A. nor B. 1s correct.



ConcepTest 6.2. FREE PARTICLES AND FOURIER TRANSFORMS

If you follow the function eFx~®9 gver time, you will see that. . . (Choose
one.)

A. At any given x-value, the function rotates in a circle around
the complex plane.

B. The entire function keeps its shape but moves at constant speed
along the x-axis.

C. Both A. and B. are correct; they are actually saying the same
thing 1n this case.

D. Neither A. nor B. is correct.

Solution: C. You can plot a complex function of x in three
dimensions by plotting the real and imaginary parts of the function
in the yand z directions. If you do, this function at any moment
will spiral around the x axis. As it moves to the right each point
on the x axis rotates. (Picture a barber pole.)



6.3. MOMENTUM EIGENSTATES

6.3 Momentum Eigenstates



Quick Check 6.3. MOMENTUM EIGENSTATES

Suppose (3) = 1/3 and (5) = 1/5. Which of the following are
true? (Choose all that apply.)

A. The probability of measuring a position of 3 is 1/9.
B. The probability of measuring a momentum of 371 is 1/9.

C. The probability of measuring a momentum between 3 and 5h
is 5 w(k) dk

D. Thﬁ pr9bability of measuring a momentum between 371 and 57
is 5 |w(k)? dk

E. The particle 1s more likely to have a momentum very near p=
37 than very near p= 57.

F. The particle is more likely to have a momentum very near p=
5h than very near p= 37.



Quick Check 6.3. MOMENTUM EIGENSTATES

Suppose (3) = 1/3 and (5) = 1/5. Which of the following are
true? (Choose all that apply.)

A. The probability of measuring a position of 3 is 1/9.

B. The probability of measuring a momentum of 371 is 1/9.

C. The 5pl;obability of measuring a momentum between 3% and 57
is 5 w(k)dk

D. Thﬁ 5p1r£)b31bi1ity of measuring a momentum between 371 and 57
is 5 |k dk

E. The particle 1s more likely to have a momentum very near p=
37 than very near p= 57.

F. The particle 1s more likely to have a momentum very near p=

5N than very near p= 37.

Solution: D and E



Quick Check 6.3. MOMENTUM EIGENSTATES

The function Ce** is. .. (Choose all that apply.)

A. An eigenstate of energy, but only for a free particle.

B. An eigenstate of energy for any particle.

C. An eigenstate of momentum, but only for a free particle.
D. An eigenstate of momentum for any particle.

E. A physically impossible wavefunction that no particle could
ever actually have.



Quick Check 6.3. MOMENTUM EIGENSTATES

The function Ce** is. .. (Choose all that apply.)

A. An eigenstate of energy, but only for a free particle.

B. An eigenstate of energy for any particle.

C. An eigenstate of momentum, but only for a free particle.

D. An eigenstate of momentum for any particle.

E. A physically impossible wavefunction that no particle could

ever actually have.

Solution: A, D, and E



Quick Check 6.3. MOMENTUM EIGENSTATES

A :
Rewriting a wavefunction y(x) in the form A (k) & dic makes
it easier to. .. (Choose one.)

A. Find the probability density associated with different values of
the momentum.

B. Find the probability density associated with different values of
the position.

C. Find the relationship between the position and the momentum.

D. Normalize the wavefunction.



Quick Check 6.3. MOMENTUM EIGENSTATES

A :
Rewriting a wavefunction y(x) in the form A (k) & dic makes
it easier to...(Choose one.)

A. Find the probability density associated with different values of
the momentum.

B. Find the probability density associated with different values of
the position.

C. Find the relationship between the position and the momentum.

D. Normalize the wavefunction.

Solution: A



Quick Check 6.3. MOMENTUM EIGENSTATES

The figure shows two wavefunctions.

w(x)

1. Which particle 1s more likely to be found with position very
close to zero, the red or the blue?

2. Which particle 1s more likely to be found with momentum very
close to zero, the red or the blue? Hint: Both of their momen-
tum probability distributions peak at p= 0.



Quick Check 6.3. MOMENTUM EIGENSTATES

The figure shows two wavefunctions.

w(x)

1. Which particle 1s more likely to be found with position very
close to zero, the red or the blue?

Solution: red

2. Which particle 1s more likely to be found with momentum very
close to zero, the red or the blue? Hint: Both of their momen-
tum probability distributions peak at p= 0.

Solution: blue



ConcepTest 6.3. MOMENTUM EIGENSTATES

Particle 1 has wavefunction yy(x) = Ae= X and Particle 2 has

wavefunction y» = Be 2¢X . Which of the following describes
their momentum probabilities? (Choose one.)

A. Particle 1 1s more likely than Particle 2 to be found with mo-
mentum 0 < p < Ac

B. Particle 2 is more likely than Particle 1 to be found with mo-
mentum 0 < p < Nc.

C. They are equally likely to be found with momentum 0 < p <
nc.

D. You don’t have enough information to determine which is more
likely.



ConcepTest 6.3. MOMENTUM EIGENSTATES

Particle 1 has wavefunction y,(x) = Ae<*" and Particle 2 has wavefunction W = Be2¢x. Which of the
following describes their momentum probabilities? (Choose one.)

A. Particle 1 is more likely than Particle 2 to be found with momentum o < p < fic.
B. Particle 2 is more likely than Particle 1 to be found with momentum 0 < p < ic.
C. They are equally likely to be found with momentum o < p < #ic.
D. You don’t have enough information to determine which is more likely.
Solution: A. If you graphed those two functions, you would find that y»(x) is thinner than y;(x). That

means its I/A)(k) function is wider, so it has less likelihood of being found near the center (0) and more
further out.



ConcepTest 6.3. MOMENTUM EIGENSTATES

Particle 1 has wavefunction wy(x) = Ae X/ L)z. The probability
of measuring —"/L < p; < h/Lis 68%. Particle 2 has wavefunc-

tion y»(x) = Be (4x/1)?, (The figure shows y; in blue and y» n
red.) Which of the following is true of the momentum probabilities
for Particle 2? (Choose one and explain your choice.)

w(x)

A. There’s an 17% chance of finding —n/L < pp < /L.
B. There’s a 68% chance of finding —47/L < pp < 4h /L.
C. Both A and B

D. Neither A nor B



ConcepTest 6.3. MOMENTUM EIGENSTATES

Particle 1 has wavefunction y;(x) = Ae~*/D’. The probability of measuring —#/L < p, < h/Lis 68%.
Particle 2 has wavefunction y»(x) = Be @D ? (The figure shows y; in blue and y» in red.) Which of the
following is true of the momentum probabilities for Particle 2? (Choose one and explain your choice.)

w(x)

A. There’s an 17% chance of finding -7/L < p, < h/L.
B. There’s a 68% chance of finding —4#7/L < p, < 4h/L.
C. Both A and B

D. Neither A nor B

Solution: B

When you see that the wavefunction y;(x) = Ae"®/D 2gives a momentum probability of 68% of measuring
~h/L < p; < h/L, that result is independent of what L is. It would work with any length.

So we can rewrite y»(x) as Be X/ (/4] “and the same math must work with the new length L/4. That is,
there must be a 68% probability of finding 71/(L/4) < p. < h/(L/4).



ConcepTest 6.3. MOMENTUM EIGENSTATES

The Example on p. 274 gave you the wavefunction of a free par-
ticle and found that the probability you would measure the parti-
cle’s energy to be greater than 712/(mL?) was 16%. What is the

prgbability that/ you would measure its momentum to be between
— 2h/Land 2h/L?

A. 16%
B. 8%

C. 32%
D. 84%
E. 42%



ConcepTest 6.3. MOMENTUM EIGENSTATES

The Example on p. 274 gave you the wavefunction of a free particle and found that the probability you
would measure the particle’s energy to be greater tha n 72/(mL?) was 16%. What is the probability that
you would measure its momentum to be between — 2/i/Land 2hi/L?

A. 16%
B. 8%
C. 32%
D. 84%
E. 42%

Solution: D

From E = p?/(2m) we see that those momentum values both correspond to E = #2/(mL?). So any
momentum between those two values gives you an energy less than #12/(2m). So the probability is 100%
minus the 16% calculated in that example. You can also see this if you look at the example, where the
probability we’re asking about here is the unshaded part of the image.



6.4. PHASE VELOCITY AND GROUP VELOCITY

6.4 Phase Velocity and Group Velocity



Quick Check 6.4. PHASE VELOCITY AND GROUP VELOCITY

A proton, currently experiencing no forces, shoots through space at 1 million miles/hour. Which of the
following are true? (Check all that apply.)

A. The proton’s wavefunction can be expressed as a discrete sum of energy eigenstates:
kg ,
Wi f) = Cyelhoor
k=—o

B. The proton’s wavefunction can be expressed as an integral over energy eigenstates:
r

W(x, 1) = Crd™ @ dic
C. Each individual eigenstate is moving through space at approximately 1 million miles/hour.
D. The eigenstates combined have a “group velocity” of 1 million miles/hour.

E. For this proton’s energy eigenstates, dw/dk~ 1 million miles/hour.



Quick Check 6.4. PHASE VELOCITY AND GROUP VELOCITY

A proton, currently experiencing no forces, shoots through space at 1 million miles/hour. Which of the
following are true? (Check all that apply.)

A. The proton’s wavefunction can be expressed as a discrete sum of energy eigenstates:

[ .
Wt = Cyelkror
k=—wo

B. The proton’s wavefunction can be expressed as an integral over energy eigenstates:
r

W(x, t) = Crd®™ Y dkc
C. Each individual eigenstate is moving through space at approximately 1 million miles/hour.
D. The eigenstates combined have a “group velocity” of 1 million miles/hour.

E. For this proton’s energy eigenstates, dw/dk~ 1 million miles/hour.

Solution: B, D, E



Quick Check 6.4. PHASE VELOCITY AND GROUP VELOCITY

Alice 1s holding one end of a rope and gives it a quick shake, which
sends a bump moving along the rope. The velocity of that bump
isa ...(Choose one.)

A. Phase velocity
B. Group velocity
C. Neither phase velocity nor group velocity

D. Both, because these are two different ways of describing the
same thing



Quick Check 6.4. PHASE VELOCITY AND GROUP VELOCITY

Alice 1s holding one end of a rope and gives it a quick shake, which
sends a bump moving along the rope. The velocity of that bump
isa ...(Choose one.)

A. Phase velocity

B. Group velocity

C. Neither phase velocity nor group velocity

D. Both, because these are two different ways of describing the

same thing

Solution: B



ConcepTest 6.4. PHASE VELOCITY AND GROUP VELOCITY

Which of the following 1s true about a sum of two cosines? (Choose
one.)

A. Group velocity 1s always faster than phase velocity.

B. Group velocity 1s always equal to phase velocity.

C. Group velocity is always slower than phase velocity.

D. Group velocity can be faster than or slower than phase velocity.



ConcepTest 6.4. PHASE VELOCITY AND GROUP VELOCITY

Which of the following 1s true about a sum of two cosines? (Choose
one.)

A. Group velocity 1s always faster than phase velocity.

B. Group velocity 1s always equal to phase velocity.

C. Group velocity is always slower than phase velocity.

D. Group velocity can be faster than or slower than phase velocity.

Solution: D. Based on the equations vp = @/kand vy =
Aw/AKk, it could go either way.



6.5. SCATTERING AND TUNNELING

6.5 Scattering and Tunneling



Quick Check 6.5. SCATTERING AND TUNNELING

The figure shows a “potential step”: U(x) = o for x < 0, and U(x) = U, for x> o.

U(x)
Uo

What does this step represent in terms of forces? (Choose one.)

A. There is no force anywhere except for a leftward-pointing force at (or very near) x = o.
B. There is no force in the x < 0 region, but a constant force for all x> o.
C. There is no force in the x < 0 region, but a force in x> 0 that linearly increases with x.

D. The potential graph does not contain enough information to describe the forces.



Quick Check 6.5. SCATTERING AND TUNNELING

The figure shows a “potential step”: U(x) = o for x < 0, and U(x) = U, for x> o.

U(x)
Uo

What does this step represent in terms of forces? (Choose one.)

A. There is no force anywhere except for a leftward-pointing force at (or very near) x = o.
B. There is no force in the x < 0 region, but a constant force for all x> o.
C. There is no force in the x < 0 region, but a force in x> 0 that linearly increases with x.

D. The potential graph does not contain enough information to describe the forces.

Solution: A



Quick Check 6.5. SCATTERING AND TUNNELING

A particle with energy E approaches a potential step of energy
Up. (Choose one.)

A. The particle has some chance of bouncing back and some chance
of continuing on, regardless of the energies.

B. The particle will always bounce back, regardless of the energies.

C.If E < U the particle will always bounce back, and if E > U
it will always continue on.

D. If E < U the particle will always bounce back, and if E > U
it will have some chance of bouncing back and some chance of
continuing on.



Quick Check 6.5. SCATTERING AND TUNNELING

A particle with energy E approaches a potential step of energy
Up. (Choose one.)

A. The particle has some chance of bouncing back and some chance
of continuing on, regardless of the energies.

B. The particle will always bounce back, regardless of the energies.

C. If E < Uy the particle will always bounce back, and if E > U
1t will always continue on.

D. If E < U the particle will always bounce back, and if E > U
it will have some chance of bouncing back and some chance of
continuing on.

Solution: D



Quick Check 6.5. SCATTERING AND TUNNELING

An energy eigenstate (or part of an energy eigenstate) of the form
Ce X for positive k represents which of the following? Assume
E > 0. (Choose one.)

A. A wave moving at constant speed to the right.

B. A wave moving at constant speed to the left.

C. A wave that only exists for a particle moving to the right.

D. A wave that only exists for a particle moving to the left.

E. None of the above.



Quick Check 6.5. SCATTERING AND TUNNELING

An energy eigenstate (or part of an energy eigenstate) of the form
Ce X for positive k represents which of the following? Assume
E > 0. (Choose one.)

A. A wave moving at constant speed to the right.

B. A wave moving at constant speed to the left.

C. A wave that only exists for a particle moving to the right.

D. A wave that only exists for a particle moving to the left.

E. None of the above.

Solution: B



Quick Check 6.5. SCATTERING AND TUNNELING

In Equation 6.16 (p. 298) we left out a term of the form e~ ¥ in
the region x > 0 because ... (Choose one.)

A.That term can’t be normalized.

B. That term 1s part of an energy eigenstate, but 1t doesn’t appear
in the particular scenario we are considering.

C. That term 1s not part of an energy eigenstate.



Quick Check 6.5. SCATTERING AND TUNNELING

In Equation 6.16 (p. 298) we left out a term of the form e~ ¥ in
the region x > 0 because ... (Choose one.)

A.That term can’t be normalized.

B. That term 1s part of an energy eigenstate, but 1t doesn’t appear
in the particular scenario we are considering.

C. That term 1s not part of an energy eigenstate.

Solution: B



ConcepTest 6.5. SCATTERING AND TUNNELING

The figure represents the wavefunction of a particle.

U(x)
Up

/\—-

Suppose this particle is moving at 30 m/s. This tells us that. .. (Choose
one.)

A. All the pieces of this particle’s energy eigenstates are moving
at or near 30 m/s.

B. The incident waves are moving at or near 30 m/s, but the other
parts of the eigenstates may not be.

C. The group velocity of the wave packet 1s 30 m/s.



ConcepTest 6.5. SCATTERING AND TUNNELING

The figure represents the wavefunction of a particle.

U(x)
Up

/\4- X

Suppose this particle is moving at 30 m/s. This tells us that. .. (Choose
one.)

A. All the pieces of this particle’s energy eigenstates are moving
at or near 30 m/s.

B. The incident waves are moving at or near 30 m/s, but the other
parts of the eigenstates may not be.

C. The group velocity of the wave packet 1s 30 m/s.

Solution: C. The waves that make it up can all be moving at
different velocities, but the group velocity corresponds to the ob-
served motion of the particle.



ConcepTest 6.5. SCATTERING AND TUNNELING

In Equation 6.15 on p. 296, the constant A. .. (Choose one.)

A. must be determined by boundary conditions, but for any given
particle, 1s a constant.

B. could have a different value for every value of x.
C. could have a different value for every value of t.

D. could have a different value for every value of E.



ConcepTest 6.5. SCATTERING AND TUNNELING

In Equation 6.15 on p. 296, the constant A. .. (Choose one.)

A. must be determined by boundary conditions, but for any given
particle, 1s a constant.

B. could have a different value for every value of x.
C. could have a different value for every value of t.

D. could have a different value for every value of E.

Solution: D. A wave packet is a superposition of energy eigen-
states, each with a different energy and a different amplitude.



ConcepTest 6.5. SCATTERING AND TUNNELING

When a classical particle hits a potential barrier with E > U, the
particle continues to the right slower than its original speed. What
does that suggest about the behavior of a quantum mechanical
wavefunction in the same situation? (Choose one.)

A. The eigenstates on the right side of the barrier, which represent

traveling waves, will move more slowly than the eigenstates on
the left side of the barrier.

B. The individual eigenstates will not move more slowly, but their
group velocity will be slower.

C. Neither of these is necessarily true.



ConcepTest 6.5. SCATTERING AND TUNNELING

When a classical particle hits a potential barrier with E > U, the
particle continues to the right slower than its original speed. What
does that suggest about the behavior of a quantum mechanical
wavefunction in the same situation? (Choose one.)

A. The eigenstates on the right side of the barrier, which represent

traveling waves, will move more slowly than the eigenstates on
the left side of the barrier.

B. The individual eigenstates will not move more slowly, but their
group velocity will be slower.

C. Neither of these is necessarily true.

Solution: B



6.6. THE TIME-DEPENDENT SCHRODINGER EQUATION

6.6 The Time-Dependent Schrodinger Equation



Quick Check 6.6. THE TIME-DEPENDENT SCHRODINGER EQUATION

Which of the following are separable functions? (Choose all that
apply.)

A. fi(x, y) = 2 sin(3y)

B.fr(x, y) = x> + sin(3y)

C.f3(x, y) = sin(3x°y)

D. fa(x, y) = sin(>3 + 3y)

E.fs(x,y)= 17




Quick Check 6.6. THE TIME-DEPENDENT SCHRODINGER EQUATION

Which of the following are separable functions? (Choose all that
apply.)

A. fi(x, y) = sin(3y)

B.f(x, y) = 3 + sin(3y)

C.f3(x, y) = sin(3x°y)

D. fa(x, y) = sin(>3 + 3y)

E.fs(x,y)= 17

Solution: A and E



Quick Check 6.6. THE TIME-DEPENDENT SCHRODINGER EQUATION

Suppose f(x, y) = gy, z) for all values of x, y, and z. What can
you conclude? (Choose one.)

A. The function f depends on z.

B. Both functions f and g are constants.

C. Both functions f and g can depend on y, but not on x or z.

D. You can’t conclude any of those things without knowing more
about the functions.



Quick Check 6.6. THE TIME-DEPENDENT SCHRODINGER EQUATION

Suppose f(x, y) = gy, z) for all values of x, y, and z. What can
you conclude? (Choose one.)

A. The function f depends on z.

B. Both functions f and g are constants.

C. Both functions f and g can depend on y, but not on x or z.
D. You can’t conclude any of those things without knowing more

about the functions.

Solution: C



Quick Check 6.6. THE TIME-DEPENDENT SCHRODINGER EQUATION

The time-dependent Schrodinger equation can be used to derive
which of the following facts? (Choose all that apply.)

A. The probability density distribution for a particle with wave-
function w(x) is |W(x)|?.

B. The momentum eigenstates of a particle are of the form Cel<*.

C. The solutions to the time-independent Schrodingerequation
evolve through time by multiplying by elZt/1,

D. Some cats are both alive and dead at the same time.



Quick Check 6.6. THE TIME-DEPENDENT SCHRODINGER EQUATION

The time-dependent Schrodinger equation can be used to derive
which of the following facts? (Choose all that apply.)

A. The probability density distribution for a particle with wave-
function w(x) is |W(x)|?.

B. The momentum eigenstates of a particle are of the form Cel<*.

C. The solutions to the time-independent Schrodingerequation
evolve through time by multiplying by elEt/7,

D. Some cats are both alive and dead at the same time.

Solution: C



ConcepTest 6.6. THE TIME-DEPENDENT SCHRODINGER EQUATION

True or false? All solutions to the time-dependent Schrodinger
equation are separable.



ConcepTest 6.6. THE TIME-DEPENDENT SCHRODINGER EQUATION

True or false? All solutions to the time-dependent Schrodinger
equation are separable.

Solution: False. Every solution can be built as a linear combi-
nation of separable solutions, but those combinations themselves
do not have to be separable. (The function x is separable, and the
function t 1s separable, but the function x+ t 1s not.)



ConcepTest 6.6. THE TIME-DEPENDENT SCHRODINGER EQUATION

Which of the following represent separable functions? Choose all
that apply.

A filx, Y= (x+ y)* — (x— y)?
B.fo(x, y) = e**Y

C.filx, y)= '@

D. fa(x, y) = In(xy)

E.fs5(x, y) = sin(x+ y)



6.6. THE TIME-DEPENDENT SCHRODINGER EQUATION

Which of the following represent separable functions? Choose all
that apply.

A filx, Y= (x+ y)* — (x— y)?
B.fo(x, y) = e**Y

C.fix, y)= @

D. fa(x, y) = In(xy)

E.fs5(x, y) = sin(x+ y)

Solution: A, because it simplifies to 4xy.
B, because it simplifies to e2Xe3Y.

None of the others can be simplified into a product of a function
of x times a function of ¢
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