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Instructions

• These questions are offered in two formats: a deck of PowerPoint slides, and a PDF file. The two files contain identical 

contents. There are similar files for each of the 14 chapters in the book, for a total of 28 files.

• Each question is marked as a “Quick Check” or “ConcepTest.”

– Quick Checks are questions that most students should be able to answer correctly if they have done the reading or 

followed the lecture. You can use them to make sure students are where you think they are before you move on.

– ConcepTests (a term coined by Eric Mazur) are intended to stimulate debate, so you don’t want to prep the class 

too explicitly before asking them. Ideally you want between 30% and 80% of the class to answer correctly.

• Either way, if a strong majority answers correctly, you can briefly discuss the answer and move on. If many students do 

not answer correctly, consider having them talk briefly in pairs or small groups and then vote again. You may be surprised 

at how much a minute of unguided discussion improves the hit rate.

• Each question is shown on two slides: the first shows only the question, and the second adds the correct answer.

• Some of these questions are also included in the book under “Conceptual Questions and ConcepTests,” but this file 

contains additional questions that are not in the book.

• Some of the pages contain multiple questions with the same set of options.  These questions are numbered as separate 

questions on the page.

• Some questions can have multiple answers. (These are all clearly marked with the phrase “Choose all that apply.”) If you 

are using a clicker system that doesn’t allow multiple responses, you can ask each part separately as a yes-or-no question.





6.1.  MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

6.1 Math Interlude: Standing Waves, Traveling Waves, and Partial Deriva- 

tives



Quick Check 6.1.  MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

Which of the following describes the evolution of a standing wave 

over time? (Choose one.)

A. The amplitude and the wavelength both change.

B. The amplitude changes but the wavelength doesn’t.

C. The wavelength changes but the amplitude doesn’t.

D. Neither the amplitude nor the wavelength changes.



Quick Check 6.1.  MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

Which of the following describes the evolution of a standing wave 

over time? (Choose one.)

A. The amplitude and the wavelength both change.

B. The amplitude changes but the wavelength doesn’t.

C. The wavelength changes but the amplitude doesn’t.

D. Neither the amplitude nor the wavelength changes.

Solution: B



Quick Check 6.1.  MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

A standing wave starts out in the form y =  3 cos(2x). If you 

watch that standing wave over time, which of the following never 

changes? (Choose one.)

A. The x-intercepts.

B. The y-intercept.

C. The area under one wavelength’s worth of the curve.

D. None of the above.



Quick Check 6.1.  MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

A standing wave starts out in the form y =  3 cos(2x). If you 

watch that standing wave over time, which of the following never 

changes? (Choose one.)

A. The x-intercepts.

B. The y-intercept.

C. The area under one wavelength’s worth of the curve.

D. None of the above.

Solution: A



Quick Check 6.1.  MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

If you watch a traveling wave over time, which of the following 

never changes? (Choose one.)

A. The x-intercepts.

B. The y-intercept.

C. The area under one wavelength’s worth of the curve.

D. None of the above.



Quick Check 6.1.  MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

If you watch a traveling wave over time, which of the following 

never changes? (Choose one.)

A. The x-intercepts.

B. The y-intercept.

C. The area under one wavelength’s worth of the curve.

D. None of the above.

Solution: C



Quick Check 6.1.  MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

Let u(x, t) be the temperature along a rod. If the temperature is 

the same everywhere on the rod, and it’s steadily getting hotter 

all over the rod at the same rate, which of the following is true? 

(Choose one.)

A. (∂u/∂x) >  (∂u/∂t)

B. (∂u/∂x) =  (∂u/∂t)

C. (∂u/∂x) <  (∂u/∂t)

D. There’s not enough information to tell.



Quick Check 6.1.  MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

Let u(x, t) be the temperature along a rod. If the temperature is 

the same everywhere on the rod, and it’s steadily getting hotter 

all over the rod at the same rate, which of the following is true? 

(Choose one.)

A. (∂u/∂x) >  (∂u/∂t)

B. (∂u/∂x) =  (∂u/∂t)

C. (∂u/∂x) <  (∂u/∂t)

D. There’s not enough information to tell.

Solution: C



Quick Check 6.1.  MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

If f  (x, t) =  2x2 sin(3t), which of the following is ∂f/∂x? (Choose 

one.)

A. 4x

B. 4x sin(3t)

C. 6x2 cos(3t)

D. 12x cos(3t)



Quick Check 6.1.  MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

If f  (x, t) =  2x2 sin(3t), which of the following is ∂f/∂x? (Choose 

one.)

A. 4x

B. 4x sin(3t)

C. 6x2 cos(3t)

D. 12x cos(3t)

Solution: B



ConcepTest 6.1.  MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

What is the period of the function f  (t) =  2 sin(4t) +  3 sin(2t)? 

(Choose one.)

A. 2

B. 4

C. π/2

D. π

E. This function doesn’t have a well-defined period.



ConcepTest 6.1.  MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

What is the period of the function f  (t) =  2 sin(4t) +  3 sin(2t)? 

(Choose one.)

A. 2

B. 4

C. π/2

D. π

E. This function doesn’t have a well-defined period.

Solution:  D. Period is defined as the time it takes for the func- 

tion to return to its original value and start repeating.  The first 

sine has period π/2 and the second one has period π.  After 

t =   π/2 the first one will start repeating but the second one 

will be halfway through its period. After t =  π both sines will be 

back where they started, so that’s when the whole function will 

start repeating.



ConcepTest 6.1.  MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

The function f  (x, t) has the following two properties.

• If you look at the entire function at any particular moment in time, you see a sine wave in x.

• If you follow the function at any particular x-value, you see it oscillating sinusoidally in t.

Choose one.

A. This function is neither a standing wave nor a traveling wave.

B. This function might be a standing wave, but it is not a traveling wave.

C. This function might be a traveling wave, but it is not a standing wave.

D. This function might be a traveling wave, or it might be a standing wave.

E. This function could be both a traveling wave and a standing wave, because they are two mathematical 

forms for expressing the same motion.



ConcepTest 6.1.  MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

The function f  (x, t) has the following two properties.

• If you look at the entire function at any particular moment in time, you see a sine wave in x.

• If you follow the function at any particular x-value, you see it oscillating sinusoidally in t.

Choose one.

A. This function is neither a standing wave nor a traveling wave.

B. This function might be a standing wave, but it is not a traveling wave.

C. This function might be a traveling wave, but it is not a standing wave.

D. This function might be a traveling wave, or it might be a standing wave.

E. This function could be both a traveling wave and a standing wave, because they are two mathematical 

forms for expressing the same motion.

Solution: D



ConcepTest 6.1.  MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

A curve is changing over time, so its height is given as a function 

y(x, t). The partial derivative ∂2y/∂x2 is, in general. . . (Choose 

one.)

A. A constant.

B. A function of x but not t.

C. A function of t but not x.

D. A function of both x and t.



ConcepTest 6.1.  MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

A curve is changing over time, so its height is given as a function 

y(x, t). The partial derivative ∂2y/∂x2 is, in general. . . (Choose 

one.)

A. A constant.

B. A function of x but not t.

C. A function of t but not x.

D. A function of both x and t.

Solution: D



ConcepTest 6.1.  MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

A curve is changing over time, so its height is given as a function

y(x, t). At one particular place and time, the following “mixed

partial derivative” is positive.

∂ ∂y 
∂t ∂x

What does that tell you about the curve at that place and time? 

Choose one.

A. The slope of the curve is positive.

B. The curve is moving upward.

C. The concavity of the curve is positive.

D. The curve is accelerating upward.

E. The slope of the curve is getting higher over time.



ConcepTest 6.1.  MATH INTERLUDE: STANDING WAVES, TRAVELING WAVES, AND PARTIAL DERIVATIVES

A curve is changing over time, so its height is given as a function y(x, t). At one particular place and time, 

the following “mixed partial derivative” is positive.

∂ ∂y  
∂t ∂x

What does that tell you about the curve at that place and time? Choose one.

A. The slope of the curve is positive.

B. The curve is moving upward.

C. The concavity of the curve is positive.

D. The curve is accelerating upward.

E. The slope of the curve is getting higher over time.

Solution: E. (∂y/∂x) is the slope, and ∂/∂t of anything tells you how that thing is changing over time, 

so this tells you how the slope is changing.



6.2.  FREE PARTICLES AND FOURIER TRANSFORMS

6.2 Free Particles and Fourier Transforms



Quick Check 6.2.  FREE PARTICLES AND FOURIER TRANSFORMS

Why isn’t it possible for a particle to have the following wavefunc- 

tion?

ψ(x) =  Aeik1x +  Beik2x

(Choose one.)

A. It’s not continuous.

B. It’s not differentiable.

C. It’s not normalizable.

D. It’s not a solution to the time-independent Schrödinger equa- 

tion.



Quick Check 6.2.  FREE PARTICLES AND FOURIER TRANSFORMS

Why isn’t it possible for a particle to have the following wavefunc- 

tion?

ψ(x) =  Aeik1x +  Beik2x

(Choose one.)

A. It’s not continuous.

B. It’s not differentiable.

C. It’s not normalizable.

D. It’s not a solution to the time-independent Schrödinger equa- 

tion.

Solution: C



Quick Check 6.2.  FREE PARTICLES AND FOURIER TRANSFORMS

The functions ψπ(x) =  eiπx and ψ−π(x) =  e−iπx represent. . . 

(Choose one.)

A. Two different eigenstates of a free particle, representing two 

different energy levels.

B. Two different eigenstates of a free particle, both representing 

the same energy level.

C. The same eigenstate of a free particle, expressed in two different 

ways.



Quick Check 6.2.  FREE PARTICLES AND FOURIER TRANSFORMS

The functions ψπ(x) =  eiπx and ψ−π(x) =  e−iπx represent. . . 

(Choose one.)

A. Two different eigenstates of a free particle, representing two 

different energy levels.

B. Two different eigenstates of a free particle, both representing 

the same energy level.

C. The same eigenstate of a free particle, expressed in two different 

ways.

Solution: B



Quick Check 6.2.  FREE PARTICLES AND FOURIER TRANSFORMS

A Fourier transform is a mathematical technique for. . . (Choose 

one.)

A. Finding the complex exponential function that most nearly ap- 

proximates a given function f  (x).

B. Writing a function f  (x) as a series of complex exponentials.

C. Writing a function f  (x) as an integral over complex exponen- 

tials.

D. Writing a function f  (x) as a polynomial.



Quick Check 6.2.  FREE PARTICLES AND FOURIER TRANSFORMS

A Fourier transform is a mathematical technique for. . . (Choose 

one.)

A. Finding the complex exponential function that most nearly ap- 

proximates a given function f  (x).

B. Writing a function f  (x) as a series of complex exponentials.

C. Writing a function f  (x) as an integral over complex exponen- 

tials.

D. Writing a function f  (x) as a polynomial.

Solution: C



Quick Check 6.2.  FREE PARTICLES AND FOURIER TRANSFORMS

If you evaluated 

one.)

r 7

3

sin(kx)
dk, you would end up with. . . (Choose

ekx −  2

A. A constant

B. A function of x

C. A function of k

D. A multivariate function of both x and k



Quick Check 6.2.  FREE PARTICLES AND FOURIER TRANSFORMS

If you evaluated 

one.)

r 7

3

sin(kx)
dk, you would end up with. . . (Choose

ekx −  2

A. A constant

B. A function of x

C. A function of k

D. A multivariate function of both x and k

Solution: B



ConcepTest 6.2.  FREE PARTICLES AND FOURIER TRANSFORMS

True or false? If you know ψ̂(k) you can find the position proba- 

bilities for a particle.



ConcepTest 6.2.  FREE PARTICLES AND FOURIER TRANSFORMS

True or false? If you know ψ̂(k) you can find the position proba- 

bilities for a particle.

Solution: True. From ψ̂(k) you can find ψ(x), which gives the 

position probability density.



ConcepTest 6.2.  FREE PARTICLES AND FOURIER TRANSFORMS

The integral

r k1
ˆI I

I I
2

ψ(k) dk represents. . . (Choose one.)
0

A. The probability of finding a free particle’s energy between 0
and ℏ2k2/(2m).

1

B. Half the probability of finding a free particle’s energy between

0 and ℏ2k2/(2m).
1

C. Neither of those things.



ConcepTest 6.2.  FREE PARTICLES AND FOURIER TRANSFORMS

The integral

r k1
ˆI I

I I
2

ψ(k) dk represents. . . (Choose one.)
0

A. The probability of finding a free particle’s energy between 0
and ℏ2k2/(2m).

1

B. Half the probability of finding a free particle’s energy between

0 and ℏ2k2/(2m).
1

C. Neither of those things.

Solution: C. The probability of finding the particle’s energy be-

2 2
1

tween 0 and ℏ k /(2m) is

r  k1

−k1

ˆI I
I I

2
ψ(k) dk, but there’s no guaran-

tee that the lower half of that integral is equal to the upper half,

so just going the upper half doesn’t necessarily give you half the 

probability.



ConcepTest 6.2.  FREE PARTICLES AND FOURIER TRANSFORMS

If you follow the function ei(kx−ωt) over time, you will see that. . . (Choose 

one.)

A. At any given x-value, the function rotates in a circle around 

the complex plane.

B. The entire function keeps its shape but moves at constant speed 

along the x-axis.

C. Both A. and B. are correct; they are actually saying the same 

thing in this case.

D. Neither A. nor B. is correct.



ConcepTest 6.2.  FREE PARTICLES AND FOURIER TRANSFORMS

If you follow the function ei(kx−ωt) over time, you will see that. . . (Choose 

one.)

A. At any given x-value, the function rotates in a circle around 

the complex plane.

B. The entire function keeps its shape but moves at constant speed 

along the x-axis.

C. Both A. and B. are correct; they are actually saying the same 

thing in this case.

D. Neither A. nor B. is correct.

Solution: C. You can plot a complex function of x in three 

dimensions by plotting the real and imaginary parts of the function 

in the y and z directions. If you do, this function at any moment 

will spiral around the x axis. As it moves to the right each point 

on the x axis rotates. (Picture a barber pole.)



6.3. MOMENTUM EIGENSTATES

6.3 Momentum Eigenstates



Quick Check 6.3. MOMENTUM EIGENSTATES

Suppose ψ̂(3) =  1/3 and ψ̂(5) =  1/5. Which of the following are 

true? (Choose all that apply.)

A. The probability of measuring a position of 3 is 1/9.

B. The probability of measuring a momentum of 3ℏ is 1/9.

C. The probability of measuring a momentum between 3ℏ and 5ℏ

is
�5

3 ψ̂(k) dk.

D. The probability of measuring a momentum between 3ℏ and 5ℏ

is
�5

3
ˆ 2|ψ(k)| dk.

E. The particle is more likely to have a momentum very near p =  

3ℏ than very near p =  5ℏ.

F. The particle is more likely to have a momentum very near p =  

5ℏ than very near p =  3ℏ.



Quick Check 6.3. MOMENTUM EIGENSTATES

Suppose ψ̂(3) =  1/3 and ψ̂(5) =  1/5. Which of the following are 

true? (Choose all that apply.)

A. The probability of measuring a position of 3 is 1/9.

B. The probability of measuring a momentum of 3ℏ is 1/9.

C. The probability of measuring a momentum between 3ℏ and 5ℏ

is
�5

3 ψ̂(k) dk.

D. The probability of measuring a momentum between 3ℏ and 5ℏ

is
�5

3
ˆ 2|ψ(k)| dk.

E. The particle is more likely to have a momentum very near p =  

3ℏ than very near p =  5ℏ.

F. The particle is more likely to have a momentum very near p =  

5ℏ than very near p =  3ℏ.

Solution: D and E



Quick Check 6.3. MOMENTUM EIGENSTATES

The function Ceikx is. . . (Choose all that apply.)

A. An eigenstate of energy, but only for a free particle.

B. An eigenstate of energy for any particle.

C. An eigenstate of momentum, but only for a free particle.

D. An eigenstate of momentum for any particle.

E. A physically impossible wavefunction that no particle could 

ever actually have.



Quick Check 6.3. MOMENTUM EIGENSTATES

The function Ceikx is. . . (Choose all that apply.)

A. An eigenstate of energy, but only for a free particle.

B. An eigenstate of energy for any particle.

C. An eigenstate of momentum, but only for a free particle.

D. An eigenstate of momentum for any particle.

E. A physically impossible wavefunction that no particle could 

ever actually have.

Solution: A, D, and E



Quick Check 6.3. MOMENTUM EIGENSTATES

�
ˆ ikxRewriting a wavefunction ψ(x) in the form A ψ(k)e dk makes

it easier to. . . (Choose one.)

A. Find the probability density associated with different values of 

the momentum.

B. Find the probability density associated with different values of 

the position.

C. Find the relationship between the position and the momentum.

D. Normalize the wavefunction.



Quick Check 6.3. MOMENTUM EIGENSTATES

�
ˆ ikxRewriting a wavefunction ψ(x) in the form A ψ(k)e dk makes

it easier to. . . (Choose one.)

A. Find the probability density associated with different values of 

the momentum.

B. Find the probability density associated with different values of 

the position.

C. Find the relationship between the position and the momentum.

D. Normalize the wavefunction.

Solution: A



Quick Check 6.3. MOMENTUM EIGENSTATES

The figure shows two wavefunctions.

1. Which particle is more likely to be found with position very 

close to zero, the red or the blue?

2. Which particle is more likely to be found with momentum very 

close to zero, the red or the blue? Hint: Both of their momen- 

tum probability distributions peak at p =  0.



Quick Check 6.3. MOMENTUM EIGENSTATES

The figure shows two wavefunctions.

1. Which particle is more likely to be found with position very 

close to zero, the red or the blue?

Solution: red

2. Which particle is more likely to be found with momentum very 

close to zero, the red or the blue? Hint: Both of their momen- 

tum probability distributions peak at p =  0.

Solution: blue



ConcepTest 6.3. MOMENTUM EIGENSTATES

1Particle 1 has wavefunction ψ (x) =  Ae−c x2 2
and Particle 2 has

wavefunction ψ2 =  Be−2c2x2
. Which of the following describes

their momentum probabilities? (Choose one.)

A. Particle 1 is more likely than Particle 2 to be found with mo- 

mentum 0 <  p <  ℏc.

B. Particle 2 is more likely than Particle 1 to be found with mo- 

mentum 0 <  p <  ℏc.

C. They are equally likely to be found with momentum 0 <  p <
ℏc.

D. You don’t have enough information to determine which is more 

likely.



ConcepTest 6.3. MOMENTUM EIGENSTATES

2 2 2 2

Particle 1 has wavefunction ψ1(x) =  Ae−c x  and Particle 2 has wavefunction ψ2 =  Be−2c x . Which of the

following describes their momentum probabilities? (Choose one.)

A. Particle 1 is more likely than Particle 2 to be found with momentum 0 <  p <  ℏc.

B. Particle 2 is more likely than Particle 1 to be found with momentum 0 <  p <  ℏc.

C. They are equally likely to be found with momentum 0 <  p <  ℏc.

D. You don’t have enough information to determine which is more likely.

Solution:  A. If you graphed those two functions, you would find that ψ2(x) is thinner than ψ1(x). That 

means its ψ̂(k) function is wider, so it has less likelihood of being found near the center (0) and more 

further out.



ConcepTest 6.3. MOMENTUM EIGENSTATES

1Particle 1 has wavefunction ψ (x) =  Ae−(x/L) 2
. The probability

of measuring −ℏ/L <  p1 <  ℏ/L is 68%. Particle 2 has wavefunc-

tion ψ (x) =  Be−(4x/L) 2

2 1 2. (The figure shows ψ in blue and ψ in

red.) Which of the following is true of the momentum probabilities 

for Particle 2? (Choose one and explain your choice.)

A. There’s an 17% chance of finding −ℏ/L <  p2 <  ℏ/L.

B. There’s a 68% chance of finding −4ℏ/L <  p2 <  4ℏ/L.

C. Both A and B

D. Neither A nor B



ConcepTest 6.3. MOMENTUM EIGENSTATES

Particle 1 has wavefunction ψ (x) =  Ae−(x/L) 2

1 1. The probability of measuring −ℏ/L <  p <  ℏ/L is 68%.
2

Particle 2 has wavefunction ψ2(x) =  Be−(4x/L) . (The figure shows ψ1 in blue and ψ2 in red.) Which of the 

following is true of the momentum probabilities for Particle 2? (Choose one and explain your choice.)

A. There’s an 17% chance of finding −ℏ/L <  p2 <  ℏ/L.

B. There’s a 68% chance of finding −4ℏ/L <  p2 <  4ℏ/L.

C. Both A and B

D. Neither A nor B

Solution: B
2

When you see that the wavefunction ψ1(x) =  Ae−(x/L)  gives a momentum probability of 68% of measuring
−ℏ/L <  p1 <  ℏ/L, that result is independent of what L is. It would work with any length.

2

So we can rewrite ψ2(x) as Be−[x/(L/4)]  and the same math must work with the new length L/4. That is, 

there must be a 68% probability of finding ℏ/(L/4) <  p2 <  ℏ/(L/4).



ConcepTest 6.3. MOMENTUM EIGENSTATES

The Example on p. 274 gave you the wavefunction of a free par- 

ticle and found that the probability you would measure the parti- 

cle’s energy to be greater than ℏ2/(mL2) was 16%. What is the

prob ability that you would measure its momentum to be between√ √
2ℏ/L?−  2ℏ/L and

A. 16%

B. 8%

C. 32%

D. 84%

E. 42%



ConcepTest 6.3. MOMENTUM EIGENSTATES

The Example on p. 274 gave you the wavefunction of a free particle and found that the probability you
would measure the particle’s energy to be greater tha 2 2n ℏ /(mL ) was 16%. What is the probability that

√
you would measure its momentum to be between −  2ℏ/L and 

√
2ℏ/L?

A. 16%

B. 8%

C. 32%

D. 84%

E. 42%

Solution:  D

From E =  p2/(2m) we see that those momentum values both correspond to E =  ℏ2/(mL2).  So any 

momentum between those two values gives you an energy less than ℏ2/(2m). So the probability is 100% 

minus the 16% calculated in that example. You can also see this if you look at the example, where the 

probability we’re asking about here is the unshaded part of the image.



6.4.  PHASE VELOCITY AND GROUP VELOCITY

6.4 Phase Velocity and Group Velocity



Quick Check 6.4.  PHASE VELOCITY AND GROUP VELOCITY

A proton, currently experiencing no forces, shoots through space at 1 million miles/hour. Which of the 

following are true? (Check all that apply.)

A. The proton’s wavefunction can be expressed as a discrete sum of energy eigenstates:

Ψ(x, t) =
L∞

k=−∞

B. The proton’s wavefunction can be expressed as an integral over energy eigenstates:

kC ei(kx−ωt)

r ∞

kΨ(x, t) = C ei(kx−ωt) dk
−∞

C. Each individual eigenstate is moving through space at approximately 1 million miles/hour.

D. The eigenstates combined have a “group velocity” of 1 million miles/hour.

E. For this proton’s energy eigenstates, dω/dk ≈  1 million miles/hour.



Quick Check 6.4.  PHASE VELOCITY AND GROUP VELOCITY

A proton, currently experiencing no forces, shoots through space at 1 million miles/hour. Which of the 

following are true? (Check all that apply.)

A. The proton’s wavefunction can be expressed as a discrete sum of energy eigenstates:

Ψ(x, t) =
L∞

k=−∞

B. The proton’s wavefunction can be expressed as an integral over energy eigenstates:

kC ei(kx−ωt)

r ∞

kΨ(x, t) = C ei(kx−ωt) dk
−∞

C. Each individual eigenstate is moving through space at approximately 1 million miles/hour.

D. The eigenstates combined have a “group velocity” of 1 million miles/hour.

E. For this proton’s energy eigenstates, dω/dk ≈  1 million miles/hour.

Solution: B, D, E



Quick Check 6.4.  PHASE VELOCITY AND GROUP VELOCITY

Alice is holding one end of a rope and gives it a quick shake, which 

sends a bump moving along the rope. The velocity of that bump 

is a . . . (Choose one.)

A. Phase velocity

B. Group velocity

C. Neither phase velocity nor group velocity

D. Both, because these are two different ways of describing the 

same thing



Quick Check 6.4.  PHASE VELOCITY AND GROUP VELOCITY

Alice is holding one end of a rope and gives it a quick shake, which 

sends a bump moving along the rope. The velocity of that bump 

is a . . . (Choose one.)

A. Phase velocity

B. Group velocity

C. Neither phase velocity nor group velocity

D. Both, because these are two different ways of describing the 

same thing

Solution: B



ConcepTest 6.4.  PHASE VELOCITY AND GROUP VELOCITY

Which of the following is true about a sum of two cosines? (Choose 

one.)

A. Group velocity is always faster than phase velocity.

B. Group velocity is always equal to phase velocity.

C. Group velocity is always slower than phase velocity.

D. Group velocity can be faster than or slower than phase velocity.



ConcepTest 6.4.  PHASE VELOCITY AND GROUP VELOCITY

Which of the following is true about a sum of two cosines? (Choose 

one.)

A. Group velocity is always faster than phase velocity.

B. Group velocity is always equal to phase velocity.

C. Group velocity is always slower than phase velocity.

D. Group velocity can be faster than or slower than phase velocity.

Solution: D. Based on the equations vp =  ω/k and vg =

∆ω/∆k, it could go either way.



6.5.  SCATTERING AND TUNNELING

6.5 Scattering and Tunneling



Quick Check 6.5.  SCATTERING AND TUNNELING

The figure shows a “potential step”: U (x) =  0 for x <  0, and U (x) =  U0 for x ≥  0.

What does this step represent in terms of forces? (Choose one.)

A. There is no force anywhere except for a leftward-pointing force at (or very near) x =  0.

B. There is no force in the x <  0 region, but a constant force for all x ≥  0.

C. There is no force in the x <  0 region, but a force in x ≥  0 that linearly increases with x.

D. The potential graph does not contain enough information to describe the forces.



Quick Check 6.5.  SCATTERING AND TUNNELING

The figure shows a “potential step”: U (x) =  0 for x <  0, and U (x) =  U0 for x ≥  0.

What does this step represent in terms of forces? (Choose one.)

A. There is no force anywhere except for a leftward-pointing force at (or very near) x =  0.

B. There is no force in the x <  0 region, but a constant force for all x ≥  0.

C. There is no force in the x <  0 region, but a force in x ≥  0 that linearly increases with x.

D. The potential graph does not contain enough information to describe the forces.

Solution: A



Quick Check 6.5.  SCATTERING AND TUNNELING

A particle with energy E approaches a potential step of energy

U0. (Choose one.)

A. The particle has some chance of bouncing back and some chance 

of continuing on, regardless of the energies.

B. The particle will always bounce back, regardless of the energies.

C. If E <  U0 the particle will always bounce back, and if E >  U0

it will always continue on.

D. If E <  U0 the particle will always bounce back, and if E >  U0 

it will have some chance of bouncing back and some chance of 

continuing on.



Quick Check 6.5.  SCATTERING AND TUNNELING

A particle with energy E approaches a potential step of energy

U0. (Choose one.)

A. The particle has some chance of bouncing back and some chance 

of continuing on, regardless of the energies.

B. The particle will always bounce back, regardless of the energies.

C. If E <  U0 the particle will always bounce back, and if E >  U0

it will always continue on.

D. If E <  U0 the particle will always bounce back, and if E >  U0 

it will have some chance of bouncing back and some chance of 

continuing on.

Solution: D



Quick Check 6.5.  SCATTERING AND TUNNELING

An energy eigenstate (or part of an energy eigenstate) of the form 

Ce−ikx for positive k represents which of the following? Assume 

E >  0. (Choose one.)

A. A wave moving at constant speed to the right.

B. A wave moving at constant speed to the left.

C. A wave that only exists for a particle moving to the right.

D. A wave that only exists for a particle moving to the left.

E. None of the above.



Quick Check 6.5.  SCATTERING AND TUNNELING

An energy eigenstate (or part of an energy eigenstate) of the form 

Ce−ikx for positive k represents which of the following? Assume 

E >  0. (Choose one.)

A. A wave moving at constant speed to the right.

B. A wave moving at constant speed to the left.

C. A wave that only exists for a particle moving to the right.

D. A wave that only exists for a particle moving to the left.

E. None of the above.

Solution: B



Quick Check 6.5.  SCATTERING AND TUNNELING

In Equation 6.16 (p. 298) we left out a term of the form e−ikx in 

the region x >  0 because . . . (Choose one.)

A. That term can’t be normalized.

B. That term is part of an energy eigenstate, but it doesn’t appear 

in the particular scenario we are considering.

C. That term is not part of an energy eigenstate.



Quick Check 6.5.  SCATTERING AND TUNNELING

In Equation 6.16 (p. 298) we left out a term of the form e−ikx in 

the region x >  0 because . . . (Choose one.)

A. That term can’t be normalized.

B. That term is part of an energy eigenstate, but it doesn’t appear 

in the particular scenario we are considering.

C. That term is not part of an energy eigenstate.

Solution: B



ConcepTest 6.5.  SCATTERING AND TUNNELING

The figure represents the wavefunction of a particle.

Suppose this particle is moving at 30 m/s. This tells us that. . . (Choose 

one.)

A. All the pieces of this particle’s energy eigenstates are moving 

at or near 30 m/s.

B. The incident waves are moving at or near 30 m/s, but the other 

parts of the eigenstates may not be.

C. The group velocity of the wave packet is 30 m/s.



ConcepTest 6.5.  SCATTERING AND TUNNELING

The figure represents the wavefunction of a particle.

Suppose this particle is moving at 30 m/s. This tells us that. . . (Choose 

one.)

A. All the pieces of this particle’s energy eigenstates are moving 

at or near 30 m/s.

B. The incident waves are moving at or near 30 m/s, but the other 

parts of the eigenstates may not be.

C. The group velocity of the wave packet is 30 m/s.

Solution:  C. The waves that make it up can all be moving at 

different velocities, but the group velocity corresponds to the ob- 

served motion of the particle.



ConcepTest 6.5.  SCATTERING AND TUNNELING

In Equation 6.15 on p. 296, the constant A. . . (Choose one.)

A. must be determined by boundary conditions, but for any given 

particle, is a constant.

B. could have a different value for every value of x.

C. could have a different value for every value of t.

D. could have a different value for every value of E.



ConcepTest 6.5.  SCATTERING AND TUNNELING

In Equation 6.15 on p. 296, the constant A. . . (Choose one.)

A. must be determined by boundary conditions, but for any given 

particle, is a constant.

B. could have a different value for every value of x.

C. could have a different value for every value of t.

D. could have a different value for every value of E.

Solution: D. A wave packet is a superposition of energy eigen- 

states, each with a different energy and a different amplitude.



ConcepTest 6.5.  SCATTERING AND TUNNELING

When a classical particle hits a potential barrier with E >  U0, the 

particle continues to the right slower than its original speed. What 

does that suggest about the behavior of a quantum mechanical 

wavefunction in the same situation? (Choose one.)

A. The eigenstates on the right side of the barrier, which represent 

traveling waves, will move more slowly than the eigenstates on 

the left side of the barrier.

B. The individual eigenstates will not move more slowly, but their 

group velocity will be slower.

C. Neither of these is necessarily true.



ConcepTest 6.5.  SCATTERING AND TUNNELING

When a classical particle hits a potential barrier with E >  U0, the 

particle continues to the right slower than its original speed. What 

does that suggest about the behavior of a quantum mechanical 

wavefunction in the same situation? (Choose one.)

A. The eigenstates on the right side of the barrier, which represent 

traveling waves, will move more slowly than the eigenstates on 

the left side of the barrier.

B. The individual eigenstates will not move more slowly, but their 

group velocity will be slower.

C. Neither of these is necessarily true.

Solution: B



6.6.  THE TIME-DEPENDENT SCHRÖ DINGER EQUATION

6.6 The Time-Dependent Schrödinger Equation



Quick Check 6.6.  THE TIME-DEPENDENT SCHRÖ DINGER EQUATION

Which of the following are separable functions? (Choose all that 

apply.)

A. f1(x, y) =  x3 sin(3y)

B.f2(x, y) =  x3 +  sin(3y)

C.f3(x, y) =  sin(3x3y)

D. f4(x, y) =  sin(x3 +  3y)

E.f5(x, y) =  17



Quick Check 6.6.  THE TIME-DEPENDENT SCHRÖ DINGER EQUATION

Which of the following are separable functions? (Choose all that 

apply.)

A. f1(x, y) =  x3 sin(3y)

B.f2(x, y) =  x3 +  sin(3y)

C.f3(x, y) =  sin(3x3y)

D. f4(x, y) =  sin(x3 +  3y)

E.f5(x, y) =  17

Solution: A and E



Quick Check 6.6.  THE TIME-DEPENDENT SCHRÖ DINGER EQUATION

Suppose f  (x, y) =  g(y, z) for all values of x, y, and z. What can 

you conclude? (Choose one.)

A. The function f  depends on z.

B. Both functions f  and g are constants.

C. Both functions f  and g can depend on y, but not on x or z.

D. You can’t conclude any of those things without knowing more 

about the functions.



Quick Check 6.6.  THE TIME-DEPENDENT SCHRÖ DINGER EQUATION

Suppose f  (x, y) =  g(y, z) for all values of x, y, and z. What can 

you conclude? (Choose one.)

A. The function f  depends on z.

B. Both functions f  and g are constants.

C. Both functions f  and g can depend on y, but not on x or z.

D. You can’t conclude any of those things without knowing more 

about the functions.

Solution: C



Quick Check 6.6.  THE TIME-DEPENDENT SCHRÖ DINGER EQUATION

The time-dependent Schrödinger equation can be used to derive 

which of the following facts? (Choose all that apply.)

A. The probability density distribution for a particle with wave- 

function ψ(x) is |ψ(x)|2.

B. The momentum eigenstates of a particle are of the form Ceikx.

C. The solutions to the time-independent Schrödinger equation 

evolve through time by multiplying by eiEt/ℏ.

D. Some cats are both alive and dead at the same time.



Quick Check 6.6.  THE TIME-DEPENDENT SCHRÖ DINGER EQUATION

The time-dependent Schrödinger equation can be used to derive 

which of the following facts? (Choose all that apply.)

A. The probability density distribution for a particle with wave- 

function ψ(x) is |ψ(x)|2.

B. The momentum eigenstates of a particle are of the form Ceikx.

C. The solutions to the time-independent Schrödinger equation 

evolve through time by multiplying by eiEt/ℏ.

D. Some cats are both alive and dead at the same time.

Solution: C



ConcepTest 6.6.  THE TIME-DEPENDENT SCHRÖ DINGER EQUATION

True or false? All solutions to the time-dependent Schrödinger 

equation are separable.



ConcepTest 6.6.  THE TIME-DEPENDENT SCHRÖ DINGER EQUATION

True or false? All solutions to the time-dependent Schrödinger 

equation are separable.

Solution:  False. Every solution can be built as a linear combi- 

nation of separable solutions, but those combinations themselves 

do not have to be separable. (The function x is separable, and the 

function t is separable, but the function x +  t is not.)



ConcepTest 6.6.  THE TIME-DEPENDENT SCHRÖ DINGER EQUATION

Which of the following represent separable functions? Choose all 

that apply.

A. f1(x, y) =  (x +  y)2 −  (x −  y)2

B.f2(x, y) =  e2x+3y

C.f3(x, y) =  
t
e2x)3y

D. f4(x, y) =  ln(xy)

E.f5(x, y) =  sin(x +  y)



6.6.  THE TIME-DEPENDENT SCHRÖ DINGER EQUATION

Which of the following represent separable functions? Choose all 

that apply.

A. f1(x, y) =  (x +  y)2 −  (x −  y)2

B.f2(x, y) =  e2x+3y

C.f3(x, y) =  
t
e2x)3y

D. f4(x, y) =  ln(xy)

E.f5(x, y) =  sin(x +  y)

Solution: A, because it simplifies to 4xy. 

B, because it simplifies to e2xe3y.

None of the others can be simplified into a product of a function 

of x times a function of t.
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