Sample Syllabus 2

Course Description

Cognitive science seeks to understand the mind by integrating findings from such variegated disciplines as philosophy, psychology, neuroscience, linguistics, anthropology, evolutionary biology, and artificial intelligence. Among the core principles guiding cognitive science are that mental processes are typically unconscious and computational; that the mind is a biological organ housed in the brain and shaped by evolution; and that many mental capacities are modularly implemented and innate. We will examine these core principles and apply them to understand a wide range of phenomena, including perception, language, mental imagery, attention, logical reasoning, mathematical reasoning, morality, intelligence, navigation, mindreading, consciousness, and emotion.

Texts

The majority of readings for this course will come from the textbook *Cognitive Science: An Introduction to the Science of the Mind*, by José Luis Bermúdez (4th edition, 2023).

Class readings and quizzes

There are readings assigned for every class. See the table below. There will be 5 surprise quizzes during the semester. These will collectively count for 10% of the final grade.

Exams

There are three tests in the format of multiple-choice during the semester. (Note: Test banks are available for instructors, please check it on the website of the textbook.)

Term paper

Information on length and topic will be distributed in due course.

DATE	TOPIC	TEXTBOOK READING	SUPPLEMENTARY READING
Week1-1	Introduction and overview	Introduction	
Week1-2	The turn away from behaviorism; Analyzing language	1.1, 1.3	Chomsky, 'Review of Skinner's <i>Verbal</i> <i>Behavior</i> '
Week1-3	Information and information- processing	1.4, 1.5	Miller, 'The magical number 7'
Week2-1	Computation and information	1.2	Tim Crane, <i>The Mechanical Mind</i> , pp. 83- 99
Week2-2	Computer models of language	2.1	Nigel Ward, SHRDLU
Week2-3	Mental imagery	2.2	Shepard and Metzler, 'Mental rotation of 3D objects'
Week3-1	Marr's theory of vision	2.3	Marr, 'Artificial intelligence: A personal view'
Week3-2	Visual pathways in the brain	3.1, 3.2	Mishkin, Ungerleider, and Macko, 'Object vision and spatial vision'
Week3-3	Using PET to study lexical processing	3.4	Posner et al. 'Localization of cognitive operations in the human brain'

Week4-1	Event-related fMRI and the BOLD signal	3.5 and 3.6	Raichle, 'Bold insights'		
Week4-2	Review				
Week4-3	CLASS TEST				
Week5-1	Physical symbol systems	4.1	Newell and Simon, 'Computer science as empirical inquiry'		
Week5-2	The Language of Thought hypothesis	4.2	Block, 'The mind as the software of the brain' [sections 1 & 2 only]		
Week5-3	The Russian Room and strong Al	4.3	Searle, 'Is the brain a digital computer'		
Week6-1	Neurally inspired information processing; Single-layer networks	5.1, 5.2	Text only		
Week6-2	Single-layer and multilayer networks	5.3, 5.4	Text only		
Week6-3	Dynamical systems hypothesis	6.1	Beer, 'Dynamical approaches to cognitive science'		
Week7-1	Applying dynamical systems	6.2	Smith and Thelen, 'Development as a Dynamical System'		
Week7-2	Bayesianism in cognitive science 1	7.1, 7.2	Text only		
Week7-3	Bayesianism in cognitive science 2	7.3	Text only		
Week8-1		Review			
Week8-2	C	LASS TEST			
Week8-3	The modularity of mind	8.2	Fodor, 'A precis of The Modularity of Mind		
Week9-1	The massive modularity hypothesis	8.3	Cosmides & Tooby. 'Reasoning and natural selection'		
Week9-2	Cognition and neuroanatomy	9.1, 9.2	Mundale, 'Neuroanatomical foundations of cognition'		
Week9-3	The neuroscience of attention	9.3, 9.4	Text only		
Week10-1	Evaluating neuroimaging	11.5	Logothetis, 'What we can and what we cannot do with fMRI'		
Week10-2	Language learning and rules	10.1, 10.2	Rescorla, 'The language of thought hypothesis'		
Week10-3	Neural network models of language	10.3	Pinker and Prince, 'Rules and connections in human language'		
Week11-1	Bayesian language learning	10.4	Chater, Oaksford, Hahn, and Heit, 'Bayesian models of cognition'		
Week11-2	From machine learning to deep learning	12.1, 12.2	Text only		
Week11-3	Deep learning 2	12.3, 12.4	Lecun, Bengio, and Hinton, 'Deep learning'		

Week12-1	Mindreading and pretend play	13.1, 13.2	Stone and Gerrans, 'What's domain-specific about theory of mind?'	
Week12-2	Mindreading system	13.3	Text only	
Week12-3	Mindreading and simulation, The neuroscience of mindreading	13.4, 13.5	Davies, 'Simulation theory' Frith and Frith, 'The neural basis of mentalizing'	
Week13-1	Situated Robotics	14	Clark, 'An embodied cognitive science'	
Week13-2	The function of consciousness; Unconscious information processing	15.1, 15.2	Milner and Goodale, 'Two visual systems re-viewed'	
Week13-3	The hard problem of consciousness; Global workspace theory of consciousness	15.3, 15.4	Block, 'On a confusion about the function of consciousness'	
Week14-1	Ekman's basic emotions	16.1	Ekman, 'An argument for basic emotions.'	
Week14-2	Affective space	16.2	Text only	
Week14-3	Emotion of fear	16.3	Feinstein, Adolphs, Damasio, and Tranel "The Human Amygdala and the Induction and Experience of Fear"	
Week15-1	Review			
Week15-2	CLASS TEST			

Bibliography

- Beer, R. D. (2000). Dynamical approaches to cognitive science. *Trends in Cognitive Sciences, 4*, 91-99.
- Block, N. (1995). On a confusion about the function of consciousness. *Behavioral and Brain Sciences*, 18, 227-47.
- Block, N. (1995). The mind as the software of the brain. In D. Osherson, L. Gleitman, S. M. Kosslyn, E. Smith, and R. J. Sternberg (eds.), *An Invitation to Cognitive Science*. Cambridge, MA: MIT Press.
- Chater, N., Oaksford, M., Hahn, U., & Heit, E. (2010). Bayesian models of cognition. *Wiley Interdisciplinary Reviews: Cognitive Science, 1*(6), 811-823.
- Chomsky, N. (1959). A review of B. F. Skinner's Verbal Behavior. Language, 35, 26–58.
- Clark, A. (1999). An embodied cognitive science? *Trends in Cognitive Science*, 3, 345 351.
- Cosmides, L. & Tooby, J. (1991). Reasoning and natural selection. In R. Dulbecco (ed.), Encyclopedia of Human Biology, Vol. 6 (pp. 493-503). La Jolla, CA: Academic Press.
- Crane, T. (2003). The Mechanical Mind: A Philosophical Introduction to Minds, Machines, and Mental Representation. London: New York: Routledge.
- Cummins, R. (2000). "How does it work?" versus "What are the laws?" In F. C. Keil and R. A. Wilson (eds.), *Explanation and Cognition*. Cambridge, MA: MIT Press.
- Davies, M., & Stone, T. Simulation theory. In E. J. Craig (Ed.), *Routledge Encyclopedia of Philosophy Online*. London: Routledge.

Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 63, 169–200.

- Feinstein, J. S., Adolphs, R., Damasio, A., and Tranel, D. (2011). The Human Amygdala and the Induction and Experience of Fear. Current Biology, 21, 34–8.
- Frith, C.D., & Frith, U. (2006). The neural basis of mentalizing. Neuron, 50, 531-534.
- Jackson, F. (1982). Epiphenomenal qualia. Philosophical Quarterly, 32, 127-136.
- Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. *Nature*, 453, 869–78.
- Marr, D. (1977). Artificial intelligence-a personal view. Artificial Intelligence, 9, 37-48.
- McLeod, P., Plunkett, K., & Rolls, E. T. (1998). *Introduction to the Connectionist Modeling of Cognitive Processes*. Oxford; New York: Oxford University Press.
- Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. *Psychological Review*, *63*, 81–97.
- Miller, G. A. (2003). The cognitive revolution: A historical perspective. *Trends in Cognitive Science*, 7, 141–4.
- Milner, A. D., & Goodale, M. A. (2008). Two visual systems reviewed. *Neuropsychologia, 46*, 774-785.
- Mishkin, M. L., Ungerleider, G., & Macko, K. A. (1983/2001). Object vision and spatial vision: Two cortical pathways. *Trends in NeuroSciences*, 6, 414–17.
- Mundale, J. (2001). Neuroanatomical foundations of cognition: Connecting the neuronal level with the study of higher brain areas. In W.P. Bechtel, P. Mandik, J. Mundale & R.S. Stufflebeam (Eds.), *Philosophy and the Neurosciences: A Reader*. Blackwell.
- Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Symbols and search. *Communications of ACM*, *19*, 113-126. Reprinted in J. Haugeland (ed.), *Mind Design: Philosophy*, *Psychology*, *Artificial Intelligence*. Cambridge, MA: MIT Press, 1985, 35-66.
- Pinker, S., & Prince, A. (1988). Rules and connections in human language. In R. Morris (ed.), Parallel Distributed Processing. Oxford: Oxford University Press.
- Posner, M. I., Petersen, S. E., Fox, P. T., & Raichle, M. E. (1988). Localization of operations in the human brain. *Science*, *240*, 1627-1631.
- Raichle, M. E. (2001). Bold insights. Nature, 412, 128–130.
- Rescorla, M. (2019). The language of thought hypothesis. *Stanford Encyclopedia of Philosophy* (https://plato.stanford.edu/entries/language-thought/)
- Searle, J. R. (1990). Is the brain a digital computer? APA Proceedings, 64, 21–37.
- Shepard, R. N., and Metzler, J. (1971). Mental rotation of three-dimensional objects. *Science*, *171*, 701–3.
- Smith, L., & Thelen, E. (2003). Development as a dynamical system. Trends in Cognitive Science, 7, 343-348.
- Stone V. E., & Gerrans, P. (2006). What's domain-specific about theory of mind? *Social Neuroscience, 1*, 309-19.
- Ward, N. (2006). SHRDLU. Encyclopedia of Cognitive Science.