
Overview
In this chapter, you will be introduced to computational linguistics. Our objectives are to:

•	 explore	the	effects	of	language	ambiguity	on	computation;
•	 explain	how	computation	is	done;
•	 learn	about	aspects	of	language	that	are	of	interest	to	computational	linguists;	and

•	 introduce	some	applications.

17.1 What Is Natural Language?

Humans communicate using natural language. The tokens used, phonemes in 

speech and words in written text, can be ambiguous. For instance, the word walk could 

be used as a verb or a noun, although their meanings are related. Other words, like bear, 

have senses that are not related at all. And bear and bare are different words but are hom-

ophones, so when heard are not distinguishable without extra information. Refer to 

Chapter 6 Semantics to read about word meaning and the relationship between words.

Typical computer software works with data that is structured to make it unambigu-

ous. For instance, some numbers describing a person may be ordered so that the first 

number is their age in years, the second is their height in centimetres, the third, salary, 

and so on. Because of this ordering and because of the meaning of the numbers given 

in that ordering, the numbers are unambiguous. The software is designed knowing this 

structure.

Natural language does not come with knowledge of sentence structure like the fourth 

word in a sentence is the verb. So, if the fourth word is walk, deciding whether it is a noun 

or a verb must depend on other information, and this information may also be ambigu-

ous. Computer software that deals with natural language as input must cope with the 

inherent ambiguity found in the input.
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17.2 What Is Computational Linguistics?

Computational linguistics brings together aspects of computation (as computer 

software) and linguistics (as provided by the study of natural language), as the name 

suggests.

You might ask: “Why do We Want to do this?” One obvious answer is: It’s there to be 

explored! It is our ocean depths or our Mars. We are curious. We want to discover things 

just beyond our current knowledge and abilities. We want to see whether we can pro-

vide computers with the capacity to deal with human language just like we do.

But there are other, more pragmatic reasons to bring together computers and lan-

guage. Firstly, language contains information. Extracted information is more valuable 

than its non-extracted form, just like resources from the earth: Wood, metals, petro-

leum, once extracted, can be transformed and used in a variety of ways.

Similarly, people’s views about consumer products, hotel accommodation, etc. can 

be extracted and made useful to the maker of the product or the hotel management. 

Computational linguistics is used for sentiment analysis. This would include questions 

such as: Did you enjoy your stay at a certain hotel or was your experience a nega-

tive one? Is the smart phone that you just bought easy to set up? Is it performing as 

advertised?

Secondly, language is used to make human artefacts: essays, letters, email messages, 

etc. If computers are given knowledge about language, they can become language assis-

tants, providing help to correct spelling mistakes, grammar errors, etc. Microsoft Word 

uses knowledge about language to indicate spelling 

errors and bad grammar. Text messaging apps can cor-

rect spelling mistakes automatically, sometimes with 

embarrassing results.

However, extracting this information or being a 

language assistant is not straightforward. Remember, 

computers are simply machines that are provided with 

methods to process information. The methods that are 

supplied to the computer must be derived from linguis-

tic knowledge.

Many challenges confront computational linguists. 

The first challenge is to capture all of the knowledge 

that we have about language and then utilize this 

knowledge in the computer algorithms that are devel-

oped to process language. The second problem is inter-

esting from a computational point of view: Language is 

inherently ambiguous. We need some examples and an 

explanation of how this affects computation. These are 

the topics of the next two sections.

LinguistiCs tidbits: 
AspeCts of ComputAtionAL 
LinguistiCs
Did you know that computational linguistics 
utilizes the field of linguistics to then add 
something extra? Look at the following 
tidbits:

•	 Much of computational linguistics deals 
with topics that you have seen in previous 
chapters: phonology, morphology, syntax, 
semantics, and pragmatics.

•	 But, it transcends these common linguistic 
topics and is also concerned with aspects 
of language that are more pragmatic such 
as style, rhetoric, speech acts, and linking 
language to the world that it refers to.

•	 It is also concerned with applications of 
linguistics, such as translation between 
languages and summarization of texts.
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17.3 Ambiguity of Language

As we just said, natural language is ambiguous. For example, read (1).

(1)	 Rice flies like sand.

The sentence in (1) has two meanings: a) grains of rice can be propelled in the air just 

as sand can be; and b) a certain species of fly that eats or lives in rice, hence called the 

rice fly, enjoys (maybe burrowing in) sand.

These two possible meanings are the result of ambiguity at the word level, which 

allows ambiguity at the syntax level, which results in the two ambiguous meanings just 

presented. At the word level, rice is a noun in both instances. In the first case flies is a 

verb, like is a preposition, and sand is a noun. Rice then is a noun phrase, flies is the head 

verb of a verb phrase, and like sand is a prepositional phrase that is the complement of 

the verb.

In the second case, flies is a noun and it is the head noun of a noun phrase with rice 

being a noun modifier of that head noun, like is a verb which takes sand, a noun phrase, 

as its complement. With these two syntactic structures, the semantics of each follows 

easily.

So, we see that the words, although they have the same surface form, may have differ-

ent linguistic interpretations. Although there is a straightforward solution – take every 

interpretation of each word and make all possible combinations of these interpreta-

tions – this method soon becomes infeasible, as we will see in the next section.

Let’s look at another in (2).

(2)	 The horse raced past the barn fell.

When you reached the word fell in (2), you probably realized that the sentence 

doesn’t make sense. If you think back to Chapter 14 Psycholinguistics, we call this 

type of sentence a garden path sentence. Why? You most likely interpreted the word 

raced as a verb (in the sense of The horse ran past the barn) because it immediately fol-

lows the noun phrase the horse. Interpreting raced as a past participle gives the correct 

reading. But this interpretation of raced is probably a less likely choice for most readers. 

Linguistic clues could be added to the sentence to force the correct interpretation: Put 

the word that or the words that was between horse and raced, and possibly a slight pause 

after barn as in (3).

(3)	 The horse that (was) raced past the barn <pause> fell.

By adding the word(s) that (was), the word raced is still a verb, but it is not processed as 

the main verb of the sentence, rather it is the verb of the subordinate clause modifying 

horse. So, the interpretation of the initial part of the sentence with the inclusion of the 

word that is the horse which ran past the barn and with the inclusion of the words that was 

is the horse which was being run past the barn. As we mentioned earlier, trying all possible 

interpretations of all words is not a feasible solution. However, endowing the computer 
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with the most likely interpretation as the solution would also lead us down the garden 

path. We look at how to deal with this problem in the next section.

17.4 Computation

If language were not ambiguous, we could reliably prepare computer algorithms that 

resemble the computer programs which many of us are familiar with: a sequence of 

actions that produces an outcome (e.g., a sequence of words forming a sentence fol-

lowed by the computation of the meaning of that sentence). But as we know, language 

is ambiguous and we must use a different computational paradigm.

One suggestion above was to try all possible combinations of the interpretations of 

the ambiguous items, but this was immediately dismissed as being infeasible. Let’s see 

why this is the case: Each time some aspect (e.g., word category, grammar rule to use) 

of a sentence is ambiguous, this multiplies the total number of combinations of pos-

sibilities. These combinations grow extremely quickly. Let us consider the five-word 

sentence in (4).

(4)	 Orange fish cook green eggs.

Each word in (4) is two-way ambiguous with respect to word category. Orange can be 

a noun or an adjective, fish can be a noun or a verb, cook can be a noun or a verb, green 

can be a noun or an adjective, and eggs can be a noun or a verb.

So, we have five two-way ambiguities, which gives us 32 ways to combine the word 

categories for the sentence.

pAuse And RefLeCt 17.1

Stop for a moment and ask yourself how the number 32 was obtained in the discussion of (4)?

Let’s examine further the problem of ambiguity. Suppose now that we have a sen-

tence with 40 words, and that each word is two-way ambiguous with respect to word 

category. Using a similar argument as above with the five-word sentence, we have 40 

two-way ambiguities, which gives us almost 1,100,000,000,000 combinations.

pAuse And RefLeCt 17.2

Using the method that was developed in Pause 
and Reflect 17.1, watch the number grow as the 
sentence increases to 40 words. We said that the 
number obtained with 40 two-way ambiguities was 

nearly 1,100,000,000,000 but can you figure the 
exact number? What needs to be changed in the 
computation, if each word is three-way ambiguous?
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This number of possibilities is far too many to try; nevertheless, computational lin-

guists use techniques that have been provided by the field of computer science to deal 

with this type of problem.

First of all, we need to model our language, that is, how might we capture which com-

binations make sense and which don’t. One way to obtain this model is with human-

crafted rules. A rule for word category tagging could be: A word following a determiner 

is an adjective. Another rule could be: A word following a determiner is a noun. Note 

that we have two competing tags for a word following a determiner. We also don’t have 

a rule that specifies that a word following a determiner could be a verb, so having only 

these two rules would definitely rule out this possibility.

How might we use these competing rules? The goal is to choose a set of rules that 

when used together tag all the words in a sentence with their word categories. When 

a situation allows more than one rule to be used, a decision needs to be made regard-

ing which rule to use. Going back to the example in (4), we might have two rules: a) 

A sentence can begin with a noun; and b) A sentence can begin with an adjective. We 

can choose either rule. Just as an example, let’s choose orange to be a noun. We need to 

remember that at this decision point there remains one unused alternative.

We may reach a point where we have no rules to apply but we still have words to tag 

so we have chosen an unsuccessful set of rules. At one of the decision points, if we make 

another choice, this may lead to successfully tagging all of the words in the sentence. 

In our example (4), let’s suppose that we have a rule that a noun cannot follow a noun. 

So, fish must be a verb. Let’s also suppose that we have a rule that a verb cannot follow a 

verb. So, cook must be a noun. Let’s continue: green can only be a noun or an adjective. 

Our rule stating that a noun cannot follow a noun means that it must be an adjective. 

But suppose we also have a rule that an adjective cannot follow a noun. We cannot go 

further because there are no alternative choices. We haven’t given a word category tag 

to every word. We have reached a dead end.

If that decision point still has unused options, we take one of them, otherwise we 

backtrack to a decision point that has unused options. In (4), we had only one decision 

point in the maze at which we had a choice: Orange can now be chosen to be an adjec-

tive. We now move forward through the words in (4).

Our search for a set of rules that provides a word category tag for each word may take 

some time. If our set of rules is sufficient to model all possible sentences in our language, 

we are guaranteed to find a sequence of rule choices that correctly tags all of the words 

in the sentence. Let’s continue. In (4), we probably have a rule that a verb cannot follow 

an adjective, so fish must be a noun. Since a noun cannot follow a noun, cook must be a 

verb. With the rule against a noun following a noun, and with a rule that a verb cannot 

follow an adjective, we would have two possible word category sequences. Only one 

of them is the one desired, so to remove the other, a rule not permitting two verbs in a 

sentence would be needed.

Sometimes you are lucky and make a lot of correct decisions, but sometimes this 

search methodology is no better than trying all possibilities.
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17.5 Probabilities

Another method to capture linguistic information is by using probabilities. How to 

compute these probabilities could be as simple as taking a sufficiently large number 

of examples of sentences and counting the number of times that an adjective follows 

a determiner and a noun follows a determiner. These frequencies can then be used to 

compute probabilities.

pAuse And RefLeCt 17.3

As we just stated, frequencies can be used to compute 
probabilities. Take two dice. Each one has six sides, and 
each side has a different number of one to six dots. 
When rolling the dice, how many combinations of 
dots on the two face-up sides are there? If we add the 
numbers on the dice we can have any of the numbers 
two to 12. How many ways can each number be 
achieved? What are the probabilities that each number 

will be rolled? What is the probability that when the 
dice are rolled, one of the faces is a six? Often, we are 
interested in the probability of something happening 
given another condition. For instance, what is the 
probability that one of the faces is a six when the roll of 
the dice gives a seven? What about when the roll of the 
dice is 11?

One way to use probabilities is with the search technique described earlier. To do 

this, let’s return to our maze analogy. Let us say that we have experienced many mazes 

built by the same maze architect and that we have discovered that the builder of the 

maze favors one direction over the other, let’s say taking the path to the right. So, nor-

mally we would take the path to the right, and most of the time we would find the exit 

more quickly. This can also be said for computational linguistics: our probabilities are 

obtained from many examples of sentences. For instance, in most sentences that we 

encounter, if we see a word that could be a verb immediately following a noun, it usu-

ally is a verb. This information often sends us down the correct path, but occasionally 

it sends us down a garden path.

Leaving our analogy aside, our new computational paradigm simply tries various 

ways (choices) to come up with the meaning of a sentence, some leading to failure, 

some to success. The information provided whenever a choice needs to be made could 

be an important piece of linguistic information, for example, if flies is a verb then like 

will not be a verb, so the only other alternative is that it is a preposition. Hence the 

wrong path (interpreting like as a verb) will not be taken.

17.6 Machine Learning

Another way to capture linguistic information is with a technique called machine 
learning. In the beginning, all computer programs were composed as sequences of 

instructions (or rules to be followed) crafted by humans. Most computer programs are 
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still made in this way. However, since the 1990s, machine learning has been increas-

ingly used to develop the decision-making processes that are executed by computers in 

applications such as self-driving automobiles, recommendation systems like Amazon 

and Netflix, and detection of fraudulent credit card usage. These decision-making pro-

cesses are learned by the computer by analyzing millions of situations in order to act 

correctly in each situation. In the linguistic arena, IBM’s Watson, a question-answering 

system that uses machine-learning techniques, famously defeated the two best human 

players in the game show Jeopardy! Google uses deep learning, one of the latest forms 

of machine learning that makes more human-like abstractions of what it is learning, in 

its Translate app.

To appreciate this computational method, let’s look at another analogy. We want to 

predict the time that the sun will rise. In order to do this, we record each day, in a two-

column table, the date and time that the sun rises. To be certain that our table of infor-

mation is not simply a collection of random events, we will complete it for a second and 

third year. To predict when the sun will rise on a particular day of the year, we simply 

need to look up the date in the table. Because we have collected information for each 

day of the year for three different years, we may notice small variations, so our predic-

tions will not be perfect, but they will be reasonably accurate.

Now we have learned the sunrise times. However, we will quickly realize that if our 

recording does not include a leap year, then we will have a problem in a leap year 

because we will not be able to predict the time of sunrise on 29 February. And if we move 

our location a small distance, the table may be unreliable, and if we move our location a 

significant distance, then the table will be completely useless. In order to solve the first 

problem, if a pattern is noticed, say the sunrise time 

changes by two minutes each day, then the table can 

be reformulated according to this simple mathematical 

regularity, and this regularity can be used rather than 

the explicit table.

Why is machine learning used to give computers the 

ability to gain the knowledge to perform sophisticated 

tasks? To program a computer to perform a task, all 

possible situations that can arise need to be known in 

advance so that the computer program can correctly 

perform the task in each of these situations. Some tasks 

are simply too complicated for human programmers to 

capture all of these situations in the computer program. 

With advances in machine learning, it is easier for a 

computer to analyze a large number of examples of sit-

uations (too many for a human to analyze) to capture 

patterns that can be found in these examples.

LinguistiCs tidbits: How 
Big  ARe big numbeRs?
Can you imagine the size of the number 
1,100,000,000,000 – the number of 
combinations of word categories of a 
40-word sentence mentioned above?

•	 Many laptops today have a 1TB hard drive.
•	 The space required to simply put the 

numbers from 1 to 1,100,000,000,000 in 
computer memory would take between 
5TB and 8TB.

•	 The space needed to store all of the 
 multilingual Wikipedias (in 2015) is 10TB.

•	 To label the 40 words with their word 
category for all of the alternatives would 
require 40TB or 40 1TB hard drives –  
simply for one 40-word sentence!
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17.7 Technological Changes

Digital electronic computers became available in the 1950s. Computational lin-

guistics began in these early years because the world was in conflict: The Cold War pro-

vided a strong impetus to create computer programs that would automatically translate 

between English and Russian. The translation problem proved too difficult for these 

early computers, but much has changed since then. 

Let’s examine some of these changes. In 1960, the most 

popular computer was the IBM 1401. It had typically 

16,000 bytes of main memory and a clock speed of .087 

MHz. This compares to today’s personal computers 

with 16GB of main memory (one million times larger) 

and clock speeds of 3 GHz (40,000 times faster).

In addition to these changes, we now use computers 

in parallel, enhancing our computational forces beyond 

the single computer. Automatic translation between 

languages is still beyond our current capabilities, but 

because of the capacity and speed of  current machines 

together with the use of technologies, such as machine 

learning and parallel  computing, we are much closer to 

obtaining this goal.

What other computer-related techniques and artefacts have changed to allow us to 

generate significantly more sophisticated computational linguistics software?

In the 1950s and early 1960s, all information was represented using what is called 

6-bit binary-coded decimal (BCD). This early coding system only allowed the encod-

ing of the 26 uppercase alphabet letters, the digits 0–9, and some punctuation for use by 

computers. Computational linguistics focused on English. Because text existed only in 

printed form, texts had to be specially prepared for input into the computer.

Now we use Unicode Transformation Format (UTF), UTF-8, UTF-16, or UTF-32. This 

has expanded our ability to represent every common written language and all of these 

languages are of interest to computational linguists.

In the 1960s, the first large corpus of English text was compiled: the Brown corpus. It 

comprised one million words. In the 1990s the Switchboard corpus of spoken English 

was prepared. It had three million words.

Compare this to the situation now: the Web, which was created in 1989 and made 

useful for everyone in the 1990s, contains more than a trillion words of written text, 

doubling in quantity every few years. The Web now forms a previously unimaginable 

source of information for machine learning.

17.8 Linguistic Features and Applications

Let us now turn our attention to some of the aspects of language that are of interest to 

computational linguists and have become key components of computer applications.

LinguistiCs tidbits: 
ComputeR teCHnoLogy 
CHAnges RApidLy
How quickly does digital computer 
technology progress? Here is an example: 
The New Horizons interplanetary space 
probe was launched in 2006. It had 
onboard a specially adapted late 1980s 
style computer. This computer was able to 
perform 12 million operations per second. 
When the space probe reached Pluto ten 
years later (in 2016), computers in our smart 
phones were able to perform 1.4 billion 
operations per second, more than a 100-fold 
increase!
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17.8.1 Speech
Possibly the most natural way to communicate with a computer is through speech. 

The problem of ambiguity at the phoneme level is paramount. Great strides have 

been made through the use of machine learning. From some of the early speech-to-

text translation applications that needed to undergo specialized training exercises to 

understand each user’s voice, smart phones are now endowed with sophisticated lan-

guage-comprehension systems that can understand almost anybody, albeit in narrow 

domains of language. These systems, such as Siri on Apple’s iPhone, connect us to the 

information on the Web in a way that is far more effortless than typing with thumbs 

on a tiny keyboard. In addition to speech recognition, some applications are able to 

produce human-like speech.

eyes on woRLd LAnguAges: tRAnsLAtion

Europe is a place where language translation is important because of the close proximity of a 
number of languages used by business and holiday travellers and a multinational parliament that 
requires documents to be translated into all European languages. Much effort has gone into using 
computational linguistic techniques to assist with this translation.

By the year 2000, two highly reliable translation applications (German-English and German-
Japanese) for spoken language used in typical conversations in hotels, restaurants, and grocery 
stores had been developed for mobile devices. By 2012, deep learning (a subarea of machine 
learning which is based on artificial neural networks with representation learning) was being used 
to build software that translates spoken English into spoken Mandarin reasonably well in real-time.

17.8.2 Text
The Word Level
Much can be accomplished at the word level. Computers can analyze words morpho-

logically, and can also detect the word category of words. Because computers are able to 

perform named entity recognition, words can be analyzed in groups. With named 

entity recognition, the words in the following sequence International, Business, and 

Machines are not seen as isolated words but, when combined in sequence, they are 

understood to refer to the corporation IBM. Computers have achieved human-level 

abilities on these tasks.

N-grams are sequences of n linguistic items. The following discussion concerns 

sequences of n words. Examples of n-grams are: 1-grams are words; 2-grams (or bigrams) 

are sequences of two words, such as by the; 3-grams (or trigrams) are sequences of three 

words; 4-grams are sequences of four words; and 5-grams are sequences of five words, 

for example to know how big the (taken from the sentence Astronomers want to know how 

big the universe is). In 2006, Google produced a list of almost four billion 1-, 2-, 3-, 4-, and 

5-grams that occur at least 40 times on the Web. Until Google did it, producing a list 

including 4- and 5-grams was a seemingly impossible task. One of the language models 

described earlier uses probabilities. Very accurate probabilities of word sequences can be 

calculated using this Google-gram list.
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Word meaning and word association is being accomplished now by a technique 

called word embedding, which uses machine learning techniques to find clusters of 

similar words, such as doctor-nurse, king-queen, etc., for example.

The Sentence Level
Ambiguity once again plays an important role in how we process language at the sentence 

level. Example (1) showed that grouping words into larger units is an important step in 

finding the meaning of a sentence. Much effort has gone 

into understanding how to reduce wrong decisions when 

combining different possible sentential grammatical 

constituents. Some of the ambiguity is reduced by using 

methods at word level, such as deciding the word cate-

gory for each word. Over time, parsers based on grammar 

rules have been augmented with statistical information 

to guide the decision-making process. One of these sta-

tistical parsers has a further ranking of the possible parses 

which can take into account linguistic information not 

available at the grammar rule level, for instance, right 

branching parses, which are more common in English, 

can be preferred. The best statistical parsers come close 

to the ability that humans demonstrate. In May 2016, 

Google released Parsey McParseface, reported as the most 

accurate parser at that time. It has been developed using 

deep learning, a type of machine learning.

The Discourse Level
The discourse level provides a different set of aspects of language of interest to compu-

tational linguists.

•	 Documents can be classified by the topic they are discussing.

•	 Documents can be summarized.

•	 Linguistic style can be analyzed.

•	 IBM’s Watson, a question answering system which beat the two best human 

Jeopardy! contestants, was able to understand aspects of language like puns.

Watson is now used in many software systems that require access to the information 

contained in unstructured texts.

LinguistiCs tidbits: 
ComputeRs ARe AnALyzing 
ALL text enteRed onLine
Have you ever posted a comment or a 
review online about a consumer product 
that you have bought or a service, like a 
hotel, that you have used? Have you posted 
on Twitter?

All of these online media are being 
processed sentence-by-sentence by 
software that uses computational linguistic 
techniques. One aspect that is being 
monitored is sentiment: Did you like the 
product, did you comment on a particular 
fault, did you comment during an election 
about a policy statement? This information is 
valuable to the consumer product maker or 
the political party.

Summary

This has been a brief overview of computational linguistics. We have explored the 

effects of language ambiguity on computation, explained how computation is done, 

learned about aspects of language that are of interest to computational linguists, and 

introduced some applications.
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exerciSeS

17.1	 In linguistic morphology, word stemming is the process of reducing inflected and derived words 
to their word stem. Explore an online site that demonstrates word stemming (some examples 
include https://tartarus.org/martin/PorterStemmer/index.html and http://9ol.es/porter_js_demo.
html) and perform word stemming on a number of examples. These two sites have a quotation by 
Oscar Wilde which you can stem. Other words that will provide some idea what stemming does 
include: cats, catlike, catty, stems, stemmer, stemming, stemmed, fishing, fished, argue, argued, argues, 
arguing, argument, string, ringing, bring, living, loving, listening, ruling, swimming, lemming, lies, tries, 
is, was, were, will. Try to reproduce the stemming algorithm by trying various words of your choice. 
Lemmatization attempts to remove inflectional affixes and to return the base form of a word, known 
as the lemma. Try an online lemmatization demo (for example, http://textanalysisonline.com/nltk-
wordnet-lemmatizer) with the same words that you used on the stemming site. Note the differences 
in the two algorithms. A good resource to read is https://nlp.stanford.edu/IR-book/html/htmledition/
stemming-and-lemmatization-1.html. Try some of the examples given there on the stemming and 
lemmatization sites.

17.2	 Here is an exercise that you can do in a group. Take a page of text from any book and tabulate the 
frequency of each word. Your group members can take one paragraph each. Each group in the class 
should do a different page of text. Plot the frequency of each word with the x-axis being the words 
(ordered by decreasing frequency) and the y-axis being the frequency. The 100 most frequent words 
will probably resemble the following list in very close proximity to this order: the, of, and, to, a, in, that, 
is, was, he, for, it, with, as, his, on, be, at, by, I, this, had, not, are, but, from, or, have, an, they, which, 
one, you, were, all, her, she, there, would, their, we, him, been, has, when, who, will, no, more, if, out, so, 
up, said, what, its, about, than, into, them, can, only, other, time, new, some, could, these, two, may, first, 
then, do, any, like, my, now, over, such, our, man, me, even, most, made, after, also, did, many, off, before, 
must, well, back, through, years, much, where, your, way. What is the ratio of words in this list to all the 
words not in this list? If you now take all of the tabulations done by your class, how does this affect 
the numbers?

17.3	 Garden path sentences: The old man the boat and The complex houses married and single soldiers and 
their families. Can you parse them? Can you suggest why they are garden path sentences?

17.4	 Time flies like an arrow is a sentence that has a number of syntactic and semantic ambiguities. Give as 
many interpretations of this sentence as you can think of.

Ambiguity comes in the form of word level ambiguity, syntactic ambiguity, and 

semantic ambiguity. Ambiguity causes a rapid increase in the number of possible inter-

pretations of a natural language sentence. One method for dealing with this ambiguity 

was examined. Machine learning was mentioned as an alternative approach.

Applications of computational linguistics abound, a few of which have been men-

tioned in this overview. The rate at which new applications are developed and the 

increasing sophistication of the linguistic techniques that are incorporated into them 

is impressive. Computational linguistics is part of the technological revolution that is 

changing how we interact with our world.
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Further	reading

For those of you who are interested in exploring computational linguistics more deeply, a number of 
books have been written. Here are a selected few:

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python. Sebastopol, CA: O’Reilly 
Media.

Jurafsky, D., & Martin, J. (2008). Speech and language processing (2nd Edition). Upper Saddle River, NJ: 
Pearson.

Manning, C., & Schütze, H. (1999). Foundations of statistical natural language processing. Cambridge, 
MA: MIT Press.

Manning, C., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. Cambridge, 
UK: Cambridge University Press.

Speech Recognition Breakthrough for the Spoken, Translated Word:

https://www.youtube.com/watch?v=Nu-nlQqFCKg


