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Finding Eigenvectors and Eigenvalues

This document explains the procedure for finding the eigenvectors and

eigenvalues of a matrix. The discussion and examples in this document

are an excerpt from a more-comprehensive “Matrix Algebra Review,”

which you can find on the website for my Student’s Guide to Vectors

and Tensors.

As you may recall, the operation of a matrix A on one of its eigenvec-

tors ~x produces a vector that is a scaled (but not rotated) version of ~x.

In such cases, an ”eigenvalue equation” may be written as

¯̄A~x = λ~x

where λ represents a scalar multiplier (and scalar multipliers can change

the length but not the direction of a vector). This scalar value is the

eigenvalue associated with eigenvector ~x.

To find the eigenvalues of a given matrix, start by writing the previous

equation as

¯̄A~x− λ~x = 0

which, since ¯̄I~x = ~x, can be written as

¯̄A~x− λ( ¯̄I~x) = 0

or

( ¯̄A− λI)x = 0.

which means that either x = 0 (which is a the trivial case) or

| ¯̄A− λ ¯̄I| = 0.

This equation is called the “characteristic equation” for matrix ¯̄A, and
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for a 3x3 matrix it looks like this:∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣− λ
∣∣∣∣∣∣

1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣ = 0

or ∣∣∣∣∣∣
a11 − λ a12 a13
a21 a22 − λ a23
a31 a32 a33 − λ

∣∣∣∣∣∣ = 0.

This expands to

(a11 − λ)[(a22 − λ)(a33 − λ)− a32a23]

+ a12(−1)[a21(a33 − λ)− a31a23]

+ a13[a21a32 − a31(a22 − λ)] = 0.

Finding the roots of this polynomial provides the eigenvalues (λ) for

matrix ¯̄A, and substituting those values back into the matrix equation
¯̄A~x = λ~x allows you to find eigenvectors corresponding to each eigen-

value. The process of finding the roots is less daunting than it may

appear, as you can see by considering the following example. For the

3x3 matrix ¯̄A given by

¯̄A =

 4 −2 −2

−7 5 8

5 −1 −4


the characteristic equation is∣∣∣∣∣∣

4− λ −2 −2

−7 5− λ 8

5 −1 −4− λ

∣∣∣∣∣∣ = 0

or

(4− λ)[(5− λ)(−4− λ)− (−1)(8)]

− 2(−1)[(−7)(−4− λ)− (5)(8)]

− 2[(−7)(−1)− (5)(5− λ)] = 0.

Multiplying through and subtracting within the square brackets makes

this

(4− λ)(λ2 − λ− 12) + 2(7λ− 12)− 2(5λ− 18) = 0

or

−λ3 + 5λ2 + 12λ− 36 = 0.
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Finding the roots of a polynomial like this is probably best left to a

computer, but if you’re lucky enough to have a polynomial with integer

roots, you know that each root must be a factor of the term not involving

λ (36 in this case). So (+/-) 2,3,4,6,9,12,and 18 are possibilities, and it

turns out that +2 works just fine:

−(2)3 + 5(22) + 12(2)− 36 = −8 + 20 + 24− 36 = 0.

So you know that one root of the characteristic equation (and hence one

eigenvalue) must be +2. That means you can divide a factor of (λ− 2)

out of the equation and try to see other roots in the remainder. That

division yields this:

−λ3 + 5λ2 + 12λ− 36

(λ− 2)
= −λ2 + 3λ+ 18.

The roots remaining polynomial on the right-hand side of this equation

are +6 and -3, so you now have

−λ3 + 5λ2 + 12λ− 36 = (λ− 2)(6− λ)(λ+ 3) = 0.

So matrix ¯̄A has three distinct eigenvalues with values +6, -3, and +2;

these are the factors by which matrix ¯̄A scales its eigenvectors. You

could find the eigenvectors of ¯̄A by plugging each of the eigenvalues

back into the characteristic equation for ¯̄A, but as long as you can find

N distinct eigenvalues for an NxN matrix, you can be sure that ¯̄A can

be diagonalized simply by constructing a new diagonal matrix with the

eigenvalues as the diagonal elements. So in this case, the diagonal matrix

(call it ¯̄A′) associated with matrix ¯̄A is

¯̄A′ =

 6 0 0

0 −3 0

0 0 2

 .
To see why this is true, consider the operation of matrix ¯̄A on each of

its three eigenvectors (call them ~e, ~f , and ~g):

¯̄A~e = λ1~e

¯̄A~f = λ2 ~f

¯̄A~g = λ3~g

Now imagine a matrix ¯̄E whose columns are made up of the eigenvectors
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of matrix ¯̄A:

¯̄E =

 e1 f1 g1
e2 f2 g2
e3 f3 g3


where the components of eigenvector ~e are (e1, e2, e3), the components

of eigenvector ~f are (f1, f2, f3), and the components of eigenvector ~g are

(g1, g2, g3). Multiplying matrix ¯̄A (the original matrix) by ¯̄E (the matrix

made up of the eigenvectors of ¯̄A), you get

¯̄A ¯̄E =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

×
 e1 f1 g1
e2 f2 g2
e3 f3 g3


which is

¯̄A ¯̄E =

 a11e1 + a12e2 + a13e3 a11f1 + a12f2 + a13f3 a11g1 + a12g2 + a13g3
a21e1 + a22e2 + a23e3 a21f1 + a22f2 + a23f3 a21g1 + a22g2 + a23g3
a31e1 + a32e2 + a33e3 a31f1 + a32f2 + a33f3 a31g1 + a32g2 + a33g3


The columns of this ¯̄A ¯̄E matrix are the result of multiplying ¯̄A by each

of the eigenvectors. But you know from the definition of eigenvectors

and eigenvalues that

¯̄A~e = λ1~e = λ1

 e1
e2
e3

 =

 λ1e1
λ1e2
λ1e3


and

¯̄A~f = λ2 ~f = λ2

 f1
f2
f3

 =

 λ2f1
λ2f2
λ2f3


and

¯̄A~g = λ3~g = λ3

 g1
g2
g3

 =

 λ3g1
λ3g2
λ3g3

 .
This means that the product ¯̄A ¯̄E can be written

¯̄A ¯̄E =

 λ1e1 λ2f1 λ3g1
λ1e2 λ2f2 λ3g2
λ1e3 λ2f3 λ3g3

 .
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But the matrix on the right-hand side can also be written like this: λ1e1 λ2f1 λ3g1
λ1e2 λ2f2 λ3g2
λ1e3 λ2f3 λ3g3

 =

 e1 f1 g1
e2 f2 g2
e3 f3 g3

×
 λ1 0 0

0 λ2 0

0 0 λ3


This means that you can write

¯̄A ¯̄E = E

 λ1 0 0

0 λ2 0

0 0 λ3


and multiplying both sides by the inverse of matrix ¯̄E ( ¯̄E−1) gives

¯̄E−1 ¯̄A ¯̄E = ¯̄E−1vbarĒ

 λ1 0 0

0 λ2 0

0 0 λ3

 =

 λ1 0 0

0 λ2 0

0 0 λ3

 .
You may recognize the expression ¯̄E−1 ¯̄A ¯̄E as the similarity transform of

matrix ¯̄A to a coordinate system with basis vectors that are the columns

of matrix ¯̄E. Those columns are the eigenvectors of matrix ¯̄A, and the

matrix that results from the similarity transform (call it ¯̄A′) is diagonal

and has the eigenvalues of ¯̄A as its diagonal elements.
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