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Alternative “Derivations” of the Schrödinger 
Equation 

 

 

 

As mentioned in Section 3.1 of A Student’s Guide to the Schrödinger 
Equation, it’s not possible to rigorously derive the Schrödinger 
Equation from first principles, but it is possible to “justify” an 
equation by showing that it’s consistent with other equations and 
principles.  That’s the approach taken in A Student’s Guide to the 
Schrödinger Equation by showing that the Schrödinger Equation is 
consistent with the principle of conservation of energy. 

If you’re interested in other approaches to justifying the 
Schrödinger Equation, this document provides a summary of two 
of those: the path-integral approach and the probability-flow 
approach.  After a short description of each of those approaches, 
you’ll find a list of several helpful references that provide additional 
details. 

Path-integral approach 

The path-integral approach to quantum mechanics grew out of the 
work of P.A.M. Dirac in the early 1930’s; Dirac was attempting to 
apply the Lagrangian function (the difference between kinetic and 
potential energy) to quantum mechanics.  In classical physics, the 
integral of the Lagrangian over time (which is now called the 
“action”) determines the change in phase of a wave propagating 
along a specified path, and Dirac speculated that this might be 
“analogous” to a function that determines the time evolution of a 
quantum wavefunction (such functions are called “propagators”).  
Dirac’s work didn’t lead to the Schrödinger Equation, but almost a 
decade later Richard Feynman was exploring the consequences of 
connecting the action to the wavefunction propagator and, in his 
words, “out came the Schrödinger Equation.”   



 

 

The details of Feynman’s path-integral approach are provided in 
the references listed below, but you can get a sense of how it works 
by considering a one-dimensional wavefunction Ψ(𝑥, 𝑡) given by 

Ψ(𝑥, 𝑡) = 𝐴𝑒(௫ିఠ௧) 

in which ω represents the angular frequency of the wave and k 
represents the wavenumber of the wave, given by 

𝑘 =
ଶగ

ఒ
. 

With that definition of the wavenumber, the quantity kx is 
equivalent to 

𝑘𝑥 =
ଶగ

ఒ
𝑥 = 2𝜋

௫

ఒ
. 

In this expression, the factor x/λ is the distance in units of 
wavelengths (that is, the number of wavelengths the wave has 
travelled), and multiplying by the factor of 2π converts the number 
of wavelengths into units of angle (since the phase advances by 2π 
radians for each wavelength travelled).  So kx tells you how much 
the phase of the wave changes as the wave propagates over 
distance x. 

But what if the wavenumber k varies with distance?  Consider, for 
example, the situation in which the wave travels a distance x1 
through a region with wavenumber k1, and then distance x2 
through a region with wavenumber k2.  In that case, the phase 
change over the total path through both regions is 

Phase change (spatial) = k1x1 + k2x2 

Likewise, if the wave travels along a path that passes through N 
regions, the phase change over the total path is 

Phase change (spatial) = ∑ 𝑘𝑥
ே
ୀଵ  

In the case of continuous variation of wavenumber with distance 
over path P, the wave’s phase change with distance is 

Phase change (spatial) = ∫ 𝑘𝑑𝑥
 


= ∫



ℏ
𝑑𝑥

 


 

in which the wavenumber has been related to the momentum 
using the de Broglie relation 𝑘 =



ℏ
. 



 

 

Now consider the phase change produced by the passage of time 
(ωt).  If the angular frequency (ω) varies continuously with time, a 
similar analysis gives that phase change as 

Phase change (temporal) = ∫ 𝜔𝑑𝑡 = ∫
ா

ℏ
𝑑𝑡

 

்

 

்
 

in which T represents the time it takes the wave to travel over path 
P and the angular frequency has been related to energy using the 

Planck-Einstein relation 𝜔 =
ா

ℏ
. 

The next step toward the Schrödinger Equation can be made by 
using these expressions for phase change to form a propagator that 
takes a wavefunction Ψ(𝑥ଵ, 𝑡ଵ) at one point in space (x1) and time 
(t1) and produces the wavefunction Ψ(𝑥ଶ, 𝑡ଶ) at another point in 
space (x2) and later time (t2).  If there is only a single path P to get 
from (𝑥ଵ, 𝑡ଵ) to (𝑥ଶ, 𝑡ଶ), the propagator equation looks like this: 

Ψ(𝑥ଶ, 𝑡ଶ) = 𝐴𝑒

ℏ ∫ ௗ௫

 
ು 𝑒ି


ℏ ∫ ாௗ௧

 
 Ψ(𝑥ଵ, 𝑡ଵ) 

in which A represents a normalization constant.  It’s helpful to have 
both these integrals over time, so to convert the position integral 
∫ 𝑝𝑑𝑥

 


 into an integral over time, note that the time that passes as 

the wave travels can be related to the distance travelled by the 

wave’s velocity.  So use the relation 𝑑𝑥 =
ௗ௫

ௗ௧
𝑑𝑡 = 𝑣𝑑𝑡 to write the 

propagator as 

Ψ(𝑥ଶ, 𝑡ଶ) = 𝐴𝑒

ℏ ∫ ௩ௗ௧

 
 𝑒ି


ℏ ∫ ாௗ

 
 Ψ(𝑥ଵ, 𝑡ଵ) 

= 𝐴𝑒

ℏ ∫ (௩ିா)ௗ௧

 
 Ψ(𝑥ଵ, 𝑡ଵ) 

 

The next step is to relate the terms inside the integral to the kinetic 
energy (KE) and the potential energy (PE), which you can do using 

𝐾𝐸 =
1

2
𝑚𝑣ଶ =

𝑝𝑣

2
 

for kinetic energy and 

𝐸 = 𝐾𝐸 + 𝑃𝐸 

for total energy.  This makes the propagator 

 



 

 

Ψ(𝑥ଶ, 𝑡ଶ) = 𝐴𝑒

ℏ ∫ [ଶாି(ாାா)]ௗ௧

 
 Ψ(𝑥ଵ, 𝑡ଵ) 

= 𝐴𝑒

ℏ ∫ (ாିா)ௗ௧

 
 Ψ(𝑥ଵ, 𝑡ଵ) 

As you may recall from classical mechanics, the Lagrangian (ℒ) is 
defined as ℒ = KE-PE, so this becomes 

Ψ(𝑥ଶ, 𝑡ଶ) = 𝐴𝑒

ℏ ∫ ℒ ௗ௧

 
  Ψ(𝑥ଵ, 𝑡ଵ) 

The integral of the Lagrangian over time is the “action” mentioned 
above, and it’s the action that determines the phase change of the 
propagating wavefunction.  But this is the contribution to the 
wavefunction’s evolution for a single path, and Feynman realized 
that it’s necessary to integrate over all possible paths to get the 
probability for the wavefunction to evolve from (𝑥ଵ, 𝑡ଵ) to (𝑥ଶ, 𝑡ଶ).  
Thus the correct expression 

Ψ(𝑥ଶ, 𝑡ଶ) =  𝐴𝑒

ℏ ∫ ℒ ௗ௧

 
  Ψ(𝑥ଵ, 𝑡ଵ)

 ௧௦

. 

Now consider an incremental time change ϵ, so write t2=t and t1=t-
ϵ, over an incremental distance ξ, so write x2=x and x1=x-ξ.  Then 

Ψ(𝑥, 𝑡) =  𝐴𝑒

ℏ ∫ ℒ ௗ௧

 
  Ψ(𝑥 − 𝜉, 𝑡 − 𝜖)

 ௧௦

. 

Feynman’s next trick was to expand wavefunction Ψ(𝑥 − 𝜉, 𝑡 − 𝜖) 
using a Taylor series (you can see the details in the references listed 
below), giving 

Ψ(𝑥, 𝑡) = 𝐴ඨ
2𝜋𝑖ℏ𝜖

𝑚
ቈΨ(𝑥, 𝑡) + ቆ−

𝜕Ψ(𝑥, 𝑡)

𝜕𝑡
−

𝑖

ℏ
𝑉Ψ(𝑥, 𝑡) +

𝑖ℏ

2𝑚

𝜕ଶΨ(𝑥, 𝑡)

𝜕𝑥ଶ
ቇ 𝜖 + 𝑂(𝜖ଶ) 

in which 𝑂(𝜖ଶ) represents terms of order 𝜖ଶ and higher.  For this 
equation to be true, the constant A must be 

𝐴 = ට
𝑚

2𝜋𝑖ℏ𝜖
 

and the three terms inside the parentheses must sum to zero.  That 
means that 

−
𝜕Ψ(𝑥, 𝑡)

𝜕𝑡
−

𝑖

ℏ
𝑉Ψ(𝑥, 𝑡) +

𝑖ℏ

2𝑚

𝜕ଶΨ(𝑥, 𝑡)

𝜕𝑥ଶ
= 0 



 

 

Now rearrange the terms and multiply through by 𝑖ℏ to get  

𝑖ℏ
𝜕Ψ(𝑥, 𝑡)

𝜕𝑡
= −

ℏଶ

2𝑚

𝜕ଶΨ(𝑥, 𝑡)

𝜕𝑥ଶ
+ 𝑉Ψ(𝑥, 𝑡) 

which is the time-dependent Schrödinger Equation. 

Probability-flow approach 

In discussing the change of probability over space and time, most 
quantum textbooks begin with the Schrödinger equation and 
manipulate that equation to arrive at a definition of probability 
flow (also called “probability current”), but it’s also possible to go 
the other way.  That approach begins by writing an expression for 
the change of probability in a given spatial interval and then 
manipulates that expression to arrive at a version of the 
Schrödinger equation.  This section will give you an idea of how that 
approach works, and if you’d like more detail, take a look at the 
references listed below. 

To understand probability flow, start by considering a quantum 
particle in some spatial region of interest and dividing that region 
into N discrete intervals.  Assigning an index to each interval (from 
1 to N) makes the x-axis look like this (this section uses the notation 
in Baym’s Lectures on Quantum Mechanics): 

 

   𝜓ଵ       𝜓ଶ      𝜓ଷ      𝜓ସ      𝜓ହ      𝜓ିଷ   𝜓ିଶ   𝜓ିଵ     𝜓      𝜓ାଵ  𝜓ାଶ   𝜓ାଷ  𝜓ேିଶ  𝜓ேିଵ   𝜓ே 

     1         2         3         4         5 . . .  i-3       i-2       i-1         i        i+1      i+2     i+3 . . . N-2    N-1      N 

Within each interval, there exists a one-dimensional quantum 
wavefunction 𝜓, the square magnitude of which (|𝜓|ଶ) gives the 
probability that the quantum particle will be found within that 
interval.  As you can see above the sketch of the intervals, over each 
interval in position (x), the wavefunction for that interval has a 
subscript with the interval’s index number.  So the probability of 
finding the particle in interval 1 is |𝜓ଵ|ଶ and the probability in 
interval i is |𝜓|ଶ. 

Now consider how the probability amplitude in interval i (𝜓) might 
change over time – some probability amplitude from the 
neighboring intervals (i-1 on the left and i+1 on the right) might 
“flow in” to interval i, and some probability amplitude from interval 



 

 

i might flow out into those regions.  What about the other 
intervals?  By considering the probability amplitude change over 
very short time periods, the flow of probability amlitude from those 
regions will be negligible. 

Expressing this “inflow and outflow” concept mathematically looks 
like this: 

𝜓(𝑡 + Δ𝑡) = 𝜓(𝑡) +Probability amplitude flowing in – Probability amplitude flowing out 

The next logical question is how to write an expression for the 
probability amplitude flowing from an adjacent interval (i-1, for 
example) into interval i.  For short time periods, it seems 
reasonable to make that flow proportional to the amount of time 
(Δt) as well as the amount of probability amplitude present in the 
source interval (i-1 in this case).  As for the constant of 
proportionality, Baym writes it as −√−1𝑤,ିଵ, in which the first 
subscript specifies the destination interval (the interval into which 
the probability amplitude is flowing), and the second subscript 
specifies the source interval (the interval from which the 
probability amplitude is flowing).  The reason for including the 
factor −√−1 is straightforward: it connects the terms of the 
probability-flow equation to the terms of the Schrödinger 
Equation. 

Using this notation and writing the complex unit i=√−1 (be careful 
not to confuse the “i” with the “i” interval index), you can write 

Probability amplitude flowing in to interval i from interval i-1 = −𝑖Δ𝑡𝑤,ିଵ𝜓ିଵ(𝑡) 

and 

Probability amplitude flowing in to interval i from interval i+1 = −𝑖Δ𝑡𝑤,ାଵ𝜓ାଵ(𝑡). 

 
For the probability amplitude outflow from interval i, Baym uses a 
slightly different notation.  That’s because the probability 
amplitude (the wavefunction) in any interval may change not only 
by flowing out into adjacent intervals, but it’s also possible for the 
wavefunction phase to change.  That phase change doesn’t cause 
a change in the probability within the interval, since it drops out 
when the wavefunction is squared (|𝜓|

ଶ = 𝜓 ∗ 𝜓), but it’s 
related to the potential energy of the particle.  Baym includes the 
effect of phase change into the coefficient for probability 



 

 

amplitude outflow (in either direction) and writes that coefficient 
as 𝑤.  The same factors of −𝑖Δ𝑡 apply to this term, and the 
“source” interval (i in this case) has initial probability amplitude 
𝜓(t), so the final term in the expression for 𝜓(𝑡 + Δ𝑡) is 
 

Probability amplitude flowing out (or changing phase) of interval i = −𝑖Δ𝑡𝑤𝜓(t) 
 
Thus 
 

𝜓(𝑡 + Δ𝑡) = 𝜓(𝑡) − 𝑖Δ𝑡𝑤,ିଵ𝜓ିଵ(𝑡) − 𝑖Δ𝑡𝑤,ାଵ𝜓ାଵ(𝑡) − 𝑖Δ𝑡𝑤𝜓(t), 
 
and moving 𝜓(𝑡) to the left side and dividing by −𝑖Δ𝑡 makes this 
 

ట(௧ା௧)ିట(௧)

ି௧
= 𝑖

ట(௧ା௧)ିట(௧)

௧
= 𝑤,ିଵ𝜓ିଵ(𝑡) + 𝑤,ାଵ𝜓ାଵ(𝑡) + 𝑤𝜓(t) 

 
Over a very small time period (so Δt approaches zero), the fraction 
between the equals signs becomes the partial derivative of 𝜓(𝑡) 
with respect to time.  So this is 
 

𝑖
డట(௧)

డ௧
= 𝑤,ିଵ𝜓ିଵ(𝑡) + 𝑤,ାଵ𝜓ାଵ(𝑡) + 𝑤𝜓(t) 

 
which at least has one element in common with the Schrödinger 
Equation (the leftmost term).  To make the next step, write the 
outflow/phase change coefficient as 
 

𝑤 = −𝑤,ାଵ − 𝑤,ାଵ +
𝑣

ℏ
. 

 
At first glance, this may look a bit opaque, but the first two terms 
are simply the “outflow” coefficients, which are just the negative 
of the “inflow” coefficients, since the total probability must be 
conserved (don’t confuse these negative signs with the negative 
signs in the −𝑖Δ𝑡 factors, because you’ll need both in the next 
step).  The term involving vi and Planck’s modified constant (ħ) 
allows for wavefunction phase change within an interval; the form 
is chosen to connect to the potential-energy term in the 
Schrödinger Equation. 
 
Inserting this expression for 𝑤 gives 
 



 

 

𝑖
డట(௧)

డ௧
= 𝑤,ିଵ𝜓ିଵ(𝑡) + 𝑤,ାଵ𝜓ାଵ(𝑡) + (−𝑤,ାଵ − 𝑤,ାଵ +

௩

ℏ
)𝜓(t) 

or 

𝑖
డట(௧)

డ௧
= 𝑤,ିଵ[𝜓ିଵ(𝑡) − 𝜓(t)] + 𝑤,ାଵ[𝜓ାଵ(𝑡) − 𝜓(t)] + (

௩

ℏ
)𝜓(t) 

This is beginning to look promising – the left side of this equation 
already matches a term in the Schrödinger Equation, and the right 
side contains terms related to the spatial change in the 
wavefunction and the potential energy. 

To take the final steps, shrink the discrete intervals to 
infinitesimally small extent, so the wavefunction 𝜓(𝑥) varies 
continuously across the region of interest.  Expanding the 
wavefunction over an incremental distance using a Taylor 
introduces first- and second-order spatial derivatives, and the first-
order derivatives cancel (you can see the details in the references 
listed below), leading to 

𝑖ℏ
𝜕ψ(𝑥, 𝑡)

𝜕𝑡
= −

ℏଶ

2𝑚

𝜕ଶψ(𝑥, 𝑡)

𝜕𝑥ଶ
+ 𝑣(𝑥, 𝑡)ψ(𝑥, 𝑡) 

which is the time-dependent Schrödinger Equation.  

  

References 

Path-integral approach: 

Beard and Beard, Quantum Mechanics with Applications, Allyn and 
Bacon Inc, 1970 

Feynman and Hibbs, Quantum Mechanics and Path Integrals, 
McGraw-Hill, 2005 

Derbes, “Feynman’s Derivation of the Schrödinger Equation”, 
Am.J.Phys. 64 (7), July 1996 

Bovard, “An Introduction to the Path Integral Approach to 
Quantum Mechanics”, JPhy334 4, 0014 (2009) 

Probability-flow approach: 

Baym, Lectures on Quantum Mechanics, W.A. Benjamin, Inc, 1969 

Feynman, The Feynman Lectures in Physics (Vol III),   


